Xingdan Ma , Lin Qiu , Benrong Zhang , Guozheng Wu , Fajie Wang
{"title":"用于解决功能分级材料异常热传导正演和反演问题的自适应分数物理信息神经网络","authors":"Xingdan Ma , Lin Qiu , Benrong Zhang , Guozheng Wu , Fajie Wang","doi":"10.1016/j.ijheatmasstransfer.2024.126393","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, adaptive fractional physics-informed neural networks (PINNs) are employed to solve the forward and inverse problems of anomalous heat conduction in three-dimensional functionally graded materials. In adaptive fractional PINNs, the finite difference L1 scheme is employed to discretize the time fractional derivatives in anomalous heat conduction problems. By combining the finite difference L1 scheme with automatic differentiation technique, adaptive fractional PINNs minimize a loss function constructed based on the governing equation, initial and boundary conditions to obtain solutions to heat conduction problems. To avoid competition among various loss terms during the training process, an adaptive loss balancing algorithm is adopted to balance the interactions among different terms of the loss functions. In addition, polynomial basis functions are used to expand unknown functions characterizing material parameters or heat sources, aiming to enhance the performance of adaptive fractional PINNs in resolving inverse problems. Five numerical examples involving forward, inverse, and nonlinear problems related to anomalous heat conduction are carried out to demonstrate the feasibility and effectiveness of adaptive fractional PINNs.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"236 ","pages":"Article 126393"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive fractional physics-informed neural networks for solving forward and inverse problems of anomalous heat conduction in functionally graded materials\",\"authors\":\"Xingdan Ma , Lin Qiu , Benrong Zhang , Guozheng Wu , Fajie Wang\",\"doi\":\"10.1016/j.ijheatmasstransfer.2024.126393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, adaptive fractional physics-informed neural networks (PINNs) are employed to solve the forward and inverse problems of anomalous heat conduction in three-dimensional functionally graded materials. In adaptive fractional PINNs, the finite difference L1 scheme is employed to discretize the time fractional derivatives in anomalous heat conduction problems. By combining the finite difference L1 scheme with automatic differentiation technique, adaptive fractional PINNs minimize a loss function constructed based on the governing equation, initial and boundary conditions to obtain solutions to heat conduction problems. To avoid competition among various loss terms during the training process, an adaptive loss balancing algorithm is adopted to balance the interactions among different terms of the loss functions. In addition, polynomial basis functions are used to expand unknown functions characterizing material parameters or heat sources, aiming to enhance the performance of adaptive fractional PINNs in resolving inverse problems. Five numerical examples involving forward, inverse, and nonlinear problems related to anomalous heat conduction are carried out to demonstrate the feasibility and effectiveness of adaptive fractional PINNs.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"236 \",\"pages\":\"Article 126393\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931024012225\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931024012225","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Adaptive fractional physics-informed neural networks for solving forward and inverse problems of anomalous heat conduction in functionally graded materials
In this paper, adaptive fractional physics-informed neural networks (PINNs) are employed to solve the forward and inverse problems of anomalous heat conduction in three-dimensional functionally graded materials. In adaptive fractional PINNs, the finite difference L1 scheme is employed to discretize the time fractional derivatives in anomalous heat conduction problems. By combining the finite difference L1 scheme with automatic differentiation technique, adaptive fractional PINNs minimize a loss function constructed based on the governing equation, initial and boundary conditions to obtain solutions to heat conduction problems. To avoid competition among various loss terms during the training process, an adaptive loss balancing algorithm is adopted to balance the interactions among different terms of the loss functions. In addition, polynomial basis functions are used to expand unknown functions characterizing material parameters or heat sources, aiming to enhance the performance of adaptive fractional PINNs in resolving inverse problems. Five numerical examples involving forward, inverse, and nonlinear problems related to anomalous heat conduction are carried out to demonstrate the feasibility and effectiveness of adaptive fractional PINNs.
期刊介绍:
International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems.
Topics include:
-New methods of measuring and/or correlating transport-property data
-Energy engineering
-Environmental applications of heat and/or mass transfer