Timan Lei , Geng Wang , Junyu Yang , Jin Chen , Kai H. Luo
{"title":"接触液体中二氧化碳脱华的孔隙尺度研究","authors":"Timan Lei , Geng Wang , Junyu Yang , Jin Chen , Kai H. Luo","doi":"10.1016/j.ccst.2024.100329","DOIUrl":null,"url":null,"abstract":"<div><div>Cryogenic carbon capture (CCC) designed to operate in a contact liquid is an innovative technology for capturing <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> from industrial flue gases, helping mitigate climate change. Understanding <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation properties in a contact liquid is crucial to optimizing CCC, but is challenging due to the complex physics involved. In this work, a multiphysics lattice Boltzmann (LB) model is developed to investigate <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation in a contact liquid for various operating conditions, with the multiple and fully-coupled physics being incorporated (i.e., two-phase flow, heat transfer across three phases, <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> transport between the gas and liquid, homogeneous and heterogeneous desublimation of <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span>, and solid <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> generation). The <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation process in a contact liquid is well reproduced. Moreover, parametric studies and quantitative analyses are set out to identify optimal conditions for CCC. The decreasing liquid temperature (<span><math><msub><mi>T</mi><mi>l</mi></msub></math></span>) and flue gas temperature (<span><math><msub><mi>T</mi><mn>0</mn></msub></math></span>) are found to accelerate the <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation rate and enhance the <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> capture velocity (<span><math><msub><mi>v</mi><mi>c</mi></msub></math></span>). However, excessively low <span><math><msub><mi>T</mi><mi>l</mi></msub></math></span> and <span><math><msub><mi>T</mi><mn>0</mn></msub></math></span> values should be avoided. These conditions increase the energy consumption of cooling while only marginally improving <span><math><msub><mi>v</mi><mi>c</mi></msub></math></span>, due to the limited <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> supply. The CCC system performs effectively when purifying flue gases with high <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> content (<span><math><msub><mi>Y</mi><mn>0</mn></msub></math></span>). This is because the large <span><math><msub><mi>Y</mi><mn>0</mn></msub></math></span> accelerates the <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation rate and enhances the overall <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> capture efficiency. A high gas injection velocity (or <span><math><mtext>Pe</mtext></math></span>) is beneficial for amplifying <span><math><msub><mi>v</mi><mi>c</mi></msub></math></span> by increasing the gas–liquid interfaces and enhancing the <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> supply. Nevertheless, too high a <span><math><mtext>Pe</mtext></math></span> should be avoided, as it hinders the transport of <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> to the liquid or solid <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> surfaces, ultimately restricting the amount of <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> available for desublimation and inhibiting the enhancement of <span><math><msub><mi>v</mi><mi>c</mi></msub></math></span>. This study develops a viable LB methodology to investigate <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation in a contact liquid for varying conditions, which advances the knowledge base of CCC and facilitates its industrial applications.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100329"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pore-scale study of CO2 desublimation in a contact liquid\",\"authors\":\"Timan Lei , Geng Wang , Junyu Yang , Jin Chen , Kai H. Luo\",\"doi\":\"10.1016/j.ccst.2024.100329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cryogenic carbon capture (CCC) designed to operate in a contact liquid is an innovative technology for capturing <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> from industrial flue gases, helping mitigate climate change. Understanding <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation properties in a contact liquid is crucial to optimizing CCC, but is challenging due to the complex physics involved. In this work, a multiphysics lattice Boltzmann (LB) model is developed to investigate <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation in a contact liquid for various operating conditions, with the multiple and fully-coupled physics being incorporated (i.e., two-phase flow, heat transfer across three phases, <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> transport between the gas and liquid, homogeneous and heterogeneous desublimation of <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span>, and solid <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> generation). The <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation process in a contact liquid is well reproduced. Moreover, parametric studies and quantitative analyses are set out to identify optimal conditions for CCC. The decreasing liquid temperature (<span><math><msub><mi>T</mi><mi>l</mi></msub></math></span>) and flue gas temperature (<span><math><msub><mi>T</mi><mn>0</mn></msub></math></span>) are found to accelerate the <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation rate and enhance the <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> capture velocity (<span><math><msub><mi>v</mi><mi>c</mi></msub></math></span>). However, excessively low <span><math><msub><mi>T</mi><mi>l</mi></msub></math></span> and <span><math><msub><mi>T</mi><mn>0</mn></msub></math></span> values should be avoided. These conditions increase the energy consumption of cooling while only marginally improving <span><math><msub><mi>v</mi><mi>c</mi></msub></math></span>, due to the limited <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> supply. The CCC system performs effectively when purifying flue gases with high <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> content (<span><math><msub><mi>Y</mi><mn>0</mn></msub></math></span>). This is because the large <span><math><msub><mi>Y</mi><mn>0</mn></msub></math></span> accelerates the <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation rate and enhances the overall <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> capture efficiency. A high gas injection velocity (or <span><math><mtext>Pe</mtext></math></span>) is beneficial for amplifying <span><math><msub><mi>v</mi><mi>c</mi></msub></math></span> by increasing the gas–liquid interfaces and enhancing the <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> supply. Nevertheless, too high a <span><math><mtext>Pe</mtext></math></span> should be avoided, as it hinders the transport of <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> to the liquid or solid <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> surfaces, ultimately restricting the amount of <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> available for desublimation and inhibiting the enhancement of <span><math><msub><mi>v</mi><mi>c</mi></msub></math></span>. This study develops a viable LB methodology to investigate <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation in a contact liquid for varying conditions, which advances the knowledge base of CCC and facilitates its industrial applications.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"13 \",\"pages\":\"Article 100329\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656824001416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824001416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在接触液中运行的低温碳捕集(CCC)是一种从工业烟气中捕集二氧化碳的创新技术,有助于减缓气候变化。了解接触液中的二氧化碳脱华特性对于优化 CCC 至关重要,但由于涉及复杂的物理过程,因此具有挑战性。在这项工作中,开发了一个多物理场格子玻尔兹曼(LB)模型,用于研究接触液中二氧化碳在各种操作条件下的脱附情况,其中包含多种完全耦合的物理场(即两相流、三相传热、气体和液体之间的二氧化碳传输、二氧化碳的均相和异相脱附及固体二氧化碳生成)。接触液体中的二氧化碳升华过程得到了很好的再现。此外,还进行了参数研究和定量分析,以确定 CCC 的最佳条件。研究发现,降低液体温度(Tl)和烟道气温度(T0)可加快二氧化碳脱华速度,提高二氧化碳捕获速度(vc)。但应避免 Tl 和 T0 值过低。由于二氧化碳供应量有限,这些条件会增加冷却能耗,但只能略微提高 vc。在净化二氧化碳含量(Y0)较高的烟气时,CCC 系统能有效发挥作用。这是因为较大的 Y0 会加快 CO2 的脱附速度,提高整体 CO2 捕获效率。较高的气体注入速度(或 Pe)有利于通过增加气液界面和提高二氧化碳供应量来放大 vc。然而,应避免过高的 Pe 值,因为它会阻碍二氧化碳向液态或固态二氧化碳表面的传输,最终限制了可用于解升华的二氧化碳量,并抑制 vc 值的提高。本研究开发了一种可行的 LB 方法,用于研究不同条件下接触液体中的二氧化碳脱华情况,从而推动了 CCC 知识库的发展,并促进了其工业应用。
Pore-scale study of CO2 desublimation in a contact liquid
Cryogenic carbon capture (CCC) designed to operate in a contact liquid is an innovative technology for capturing from industrial flue gases, helping mitigate climate change. Understanding desublimation properties in a contact liquid is crucial to optimizing CCC, but is challenging due to the complex physics involved. In this work, a multiphysics lattice Boltzmann (LB) model is developed to investigate desublimation in a contact liquid for various operating conditions, with the multiple and fully-coupled physics being incorporated (i.e., two-phase flow, heat transfer across three phases, transport between the gas and liquid, homogeneous and heterogeneous desublimation of , and solid generation). The desublimation process in a contact liquid is well reproduced. Moreover, parametric studies and quantitative analyses are set out to identify optimal conditions for CCC. The decreasing liquid temperature () and flue gas temperature () are found to accelerate the desublimation rate and enhance the capture velocity (). However, excessively low and values should be avoided. These conditions increase the energy consumption of cooling while only marginally improving , due to the limited supply. The CCC system performs effectively when purifying flue gases with high content (). This is because the large accelerates the desublimation rate and enhances the overall capture efficiency. A high gas injection velocity (or ) is beneficial for amplifying by increasing the gas–liquid interfaces and enhancing the supply. Nevertheless, too high a should be avoided, as it hinders the transport of to the liquid or solid surfaces, ultimately restricting the amount of available for desublimation and inhibiting the enhancement of . This study develops a viable LB methodology to investigate desublimation in a contact liquid for varying conditions, which advances the knowledge base of CCC and facilitates its industrial applications.