揭示农业甲烷和氧化亚氮排放的动态流动和空间不平等现象

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY Ecological Informatics Pub Date : 2024-10-24 DOI:10.1016/j.ecoinf.2024.102863
Fan Zhang , Yuping Bai , Xin Xuan , Ying Cai
{"title":"揭示农业甲烷和氧化亚氮排放的动态流动和空间不平等现象","authors":"Fan Zhang ,&nbsp;Yuping Bai ,&nbsp;Xin Xuan ,&nbsp;Ying Cai","doi":"10.1016/j.ecoinf.2024.102863","DOIUrl":null,"url":null,"abstract":"<div><div>Tracing the spatial transfer and heterogeneity of agricultural methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O) emissions in China is a prerequisite for the sustainable transformation of agricultural systems. In this study, we established a research framework for evaluating agricultural CH<sub>4</sub> and N<sub>2</sub>O flows and convergence. Using this framework, we established an inventory of China's agricultural CH<sub>4</sub> and N<sub>2</sub>O emissions calculated according to the IPCC inventory guidelines, built a food trade model to simulate the spatial transfer, and revealed the regional differences. Finally, we analyzed the influence mechanism by combining extended Kaya identity and the logarithmic mean divisia index (LMDI) model. We found that inter-regional transfer of agricultural CH<sub>4</sub> and N<sub>2</sub>O emissions in China have intensified, increasing from 56.14 % of total transfers in 2000 to 67.28 % in 2019. The spatial inequalities of agricultural CH<sub>4</sub> and N<sub>2</sub>O increased, and emission intensity varied more within regions than between regions, with per capita emissions showing a club convergence with “intragroup convergence and intergroup divergence”. Although the contribution of agricultural CH<sub>4</sub> and N<sub>2</sub>O emissions varies across provinces, controlling emissions intensity and land use intensity while maintaining GDP per capita is the key to emission mitigation. Our study provides theoretical support for prioritizing policies to mitigate agricultural CH<sub>4</sub> and N<sub>2</sub>O emissions.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"84 ","pages":"Article 102863"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the dynamic flows and spatial inequalities arising from agricultural methane and nitrous oxide emissions\",\"authors\":\"Fan Zhang ,&nbsp;Yuping Bai ,&nbsp;Xin Xuan ,&nbsp;Ying Cai\",\"doi\":\"10.1016/j.ecoinf.2024.102863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tracing the spatial transfer and heterogeneity of agricultural methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O) emissions in China is a prerequisite for the sustainable transformation of agricultural systems. In this study, we established a research framework for evaluating agricultural CH<sub>4</sub> and N<sub>2</sub>O flows and convergence. Using this framework, we established an inventory of China's agricultural CH<sub>4</sub> and N<sub>2</sub>O emissions calculated according to the IPCC inventory guidelines, built a food trade model to simulate the spatial transfer, and revealed the regional differences. Finally, we analyzed the influence mechanism by combining extended Kaya identity and the logarithmic mean divisia index (LMDI) model. We found that inter-regional transfer of agricultural CH<sub>4</sub> and N<sub>2</sub>O emissions in China have intensified, increasing from 56.14 % of total transfers in 2000 to 67.28 % in 2019. The spatial inequalities of agricultural CH<sub>4</sub> and N<sub>2</sub>O increased, and emission intensity varied more within regions than between regions, with per capita emissions showing a club convergence with “intragroup convergence and intergroup divergence”. Although the contribution of agricultural CH<sub>4</sub> and N<sub>2</sub>O emissions varies across provinces, controlling emissions intensity and land use intensity while maintaining GDP per capita is the key to emission mitigation. Our study provides theoretical support for prioritizing policies to mitigate agricultural CH<sub>4</sub> and N<sub>2</sub>O emissions.</div></div>\",\"PeriodicalId\":51024,\"journal\":{\"name\":\"Ecological Informatics\",\"volume\":\"84 \",\"pages\":\"Article 102863\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Informatics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574954124004059\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124004059","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

追踪中国农业甲烷(CH4)和氧化亚氮(N2O)排放的空间转移和异质性是农业系统可持续转型的前提。在本研究中,我们建立了一个评估农业甲烷(CH4)和氧化亚氮(N2O)流动和汇聚的研究框架。利用这一框架,我们建立了根据 IPCC 清单指南计算的中国农业 CH4 和 N2O 排放清单,建立了粮食贸易模型来模拟空间转移,并揭示了区域差异。最后,我们结合扩展的 Kaya 特性和对数平均除法指数(LMDI)模型分析了影响机制。我们发现,中国农业 CH4 和 N2O 排放的区域间转移加剧,占总转移量的比例从 2000 年的 56.14% 增加到 2019 年的 67.28%。农业 CH4 和 N2O 的空间不平等加剧,区域内排放强度差异大于区域间,人均排放量呈现 "组内趋同、组间分化 "的俱乐部趋同。虽然农业 CH4 和 N2O 排放在各省的贡献率不同,但在保持人均 GDP 的前提下控制排放强度和土地利用强度是减排的关键。我们的研究为确定减缓农业甲烷和一氧化二氮排放政策的优先次序提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling the dynamic flows and spatial inequalities arising from agricultural methane and nitrous oxide emissions
Tracing the spatial transfer and heterogeneity of agricultural methane (CH4) and nitrous oxide (N2O) emissions in China is a prerequisite for the sustainable transformation of agricultural systems. In this study, we established a research framework for evaluating agricultural CH4 and N2O flows and convergence. Using this framework, we established an inventory of China's agricultural CH4 and N2O emissions calculated according to the IPCC inventory guidelines, built a food trade model to simulate the spatial transfer, and revealed the regional differences. Finally, we analyzed the influence mechanism by combining extended Kaya identity and the logarithmic mean divisia index (LMDI) model. We found that inter-regional transfer of agricultural CH4 and N2O emissions in China have intensified, increasing from 56.14 % of total transfers in 2000 to 67.28 % in 2019. The spatial inequalities of agricultural CH4 and N2O increased, and emission intensity varied more within regions than between regions, with per capita emissions showing a club convergence with “intragroup convergence and intergroup divergence”. Although the contribution of agricultural CH4 and N2O emissions varies across provinces, controlling emissions intensity and land use intensity while maintaining GDP per capita is the key to emission mitigation. Our study provides theoretical support for prioritizing policies to mitigate agricultural CH4 and N2O emissions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
期刊最新文献
A novel model for mapping soil organic matter: Integrating temporal and spatial characteristics A deep learning model for detecting and classifying multiple marine mammal species from passive acoustic data Impact of discharge regulation on zooplankton communities regarding indicator species and their thresholds in the cascade weirs of the Yeongsan River Study of underwater sound propagation and attenuation characteristics at the Yangjiang offshore wind farma Spatiotemporal analysis of ocean primary productivity in Bohai Sea estimated using improved DINEOF reconstructed MODIS data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1