{"title":"利用重现核希尔伯特空间和随机特征学习哈密顿动力学","authors":"Torbjørn Smith, Olav Egeland","doi":"10.1016/j.ejcon.2024.101128","DOIUrl":null,"url":null,"abstract":"<div><div>A method for learning Hamiltonian dynamics from a limited and noisy dataset is proposed. The method learns a Hamiltonian vector field on a reproducing kernel Hilbert space (RKHS) of inherently Hamiltonian vector fields, and in particular, odd Hamiltonian vector fields. This is done with a symplectic kernel, and it is shown how the kernel can be modified to an odd symplectic kernel to impose the odd symmetry. A random feature approximation is developed for the proposed odd kernel to reduce the problem size. The performance of the method is validated in simulations for three Hamiltonian systems. It is demonstrated that the use of an odd symplectic kernel improves prediction accuracy and data efficiency, and that the learned vector fields are Hamiltonian and exhibit the imposed odd symmetry characteristics.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101128"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Hamiltonian dynamics with reproducing kernel Hilbert spaces and random features\",\"authors\":\"Torbjørn Smith, Olav Egeland\",\"doi\":\"10.1016/j.ejcon.2024.101128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A method for learning Hamiltonian dynamics from a limited and noisy dataset is proposed. The method learns a Hamiltonian vector field on a reproducing kernel Hilbert space (RKHS) of inherently Hamiltonian vector fields, and in particular, odd Hamiltonian vector fields. This is done with a symplectic kernel, and it is shown how the kernel can be modified to an odd symplectic kernel to impose the odd symmetry. A random feature approximation is developed for the proposed odd kernel to reduce the problem size. The performance of the method is validated in simulations for three Hamiltonian systems. It is demonstrated that the use of an odd symplectic kernel improves prediction accuracy and data efficiency, and that the learned vector fields are Hamiltonian and exhibit the imposed odd symmetry characteristics.</div></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"80 \",\"pages\":\"Article 101128\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358024001882\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024001882","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Learning Hamiltonian dynamics with reproducing kernel Hilbert spaces and random features
A method for learning Hamiltonian dynamics from a limited and noisy dataset is proposed. The method learns a Hamiltonian vector field on a reproducing kernel Hilbert space (RKHS) of inherently Hamiltonian vector fields, and in particular, odd Hamiltonian vector fields. This is done with a symplectic kernel, and it is shown how the kernel can be modified to an odd symplectic kernel to impose the odd symmetry. A random feature approximation is developed for the proposed odd kernel to reduce the problem size. The performance of the method is validated in simulations for three Hamiltonian systems. It is demonstrated that the use of an odd symplectic kernel improves prediction accuracy and data efficiency, and that the learned vector fields are Hamiltonian and exhibit the imposed odd symmetry characteristics.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.