基于联合加速度的闭环多臂空间机器人后捕捉阶段自适应无反作用力操纵

IF 3.1 2区 物理与天体物理 Q1 ENGINEERING, AEROSPACE Acta Astronautica Pub Date : 2024-10-20 DOI:10.1016/j.actaastro.2024.10.022
Prasad N. Dal, Suril V. Shah
{"title":"基于联合加速度的闭环多臂空间机器人后捕捉阶段自适应无反作用力操纵","authors":"Prasad N. Dal,&nbsp;Suril V. Shah","doi":"10.1016/j.actaastro.2024.10.022","DOIUrl":null,"url":null,"abstract":"<div><div>Space robots will play a crucial role in on-orbit operations like refuelling, servicing, and capture of debris. This paper focuses on capturing a non-cooperative target using a multi-arm space robot and its post-capture control. In the post-capture phase, a target object gets rigidly attached to end-effectors, and arms get into a closed-loop configuration, resulting in added constraints. Further, due to a target object’s unknown inertial parameters, system behaviour becomes unpredictable and poses difficulty in achieving reactionless manipulation to minimize base attitude disturbance. We present acceleration-based adaptive reactionless manipulation in the post-capture phase considering the unknown inertial parameter of a target. The regressor form required for adapting the joint states is derived using the acceleration-based approach. To update unknown parameters recursively immediately after impact, three methods, namely, recursive least square (RLS), weighted recursive least square (WRLS), and Kalman filter (KF), are used and compared. The efficacy of these methods has been demonstrated by using numerical studies of a dual-arm space robot that captures a non-cooperative target. Further, the acceleration-based and the velocity-based approaches are individually compared with RLS, WRLS and KF methods. Investigations have also been carried out to study the effects of change in ratios of base-to-target and base-to-robot masses, as well as angular velocities of a target.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 439-457"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint acceleration based adaptive reactionless manipulation of closed-loop multi-arm space robot in post-capture phase\",\"authors\":\"Prasad N. Dal,&nbsp;Suril V. Shah\",\"doi\":\"10.1016/j.actaastro.2024.10.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Space robots will play a crucial role in on-orbit operations like refuelling, servicing, and capture of debris. This paper focuses on capturing a non-cooperative target using a multi-arm space robot and its post-capture control. In the post-capture phase, a target object gets rigidly attached to end-effectors, and arms get into a closed-loop configuration, resulting in added constraints. Further, due to a target object’s unknown inertial parameters, system behaviour becomes unpredictable and poses difficulty in achieving reactionless manipulation to minimize base attitude disturbance. We present acceleration-based adaptive reactionless manipulation in the post-capture phase considering the unknown inertial parameter of a target. The regressor form required for adapting the joint states is derived using the acceleration-based approach. To update unknown parameters recursively immediately after impact, three methods, namely, recursive least square (RLS), weighted recursive least square (WRLS), and Kalman filter (KF), are used and compared. The efficacy of these methods has been demonstrated by using numerical studies of a dual-arm space robot that captures a non-cooperative target. Further, the acceleration-based and the velocity-based approaches are individually compared with RLS, WRLS and KF methods. Investigations have also been carried out to study the effects of change in ratios of base-to-target and base-to-robot masses, as well as angular velocities of a target.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"226 \",\"pages\":\"Pages 439-457\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576524005964\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524005964","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

空间机器人将在加油、维修和捕获碎片等在轨操作中发挥至关重要的作用。本文的重点是使用多臂太空机器人捕获非合作目标及其捕获后控制。在捕获后阶段,目标物体被刚性连接到末端执行器上,手臂进入闭环配置,从而增加了限制。此外,由于目标物体的惯性参数未知,系统行为变得不可预测,给实现无反作用力操纵以最小化基本姿态干扰带来了困难。考虑到目标的未知惯性参数,我们提出了在捕获后阶段基于加速度的自适应无反作用力操纵。通过基于加速度的方法,我们得出了适应关节状态所需的回归器形式。为了在撞击后立即递归更新未知参数,使用并比较了三种方法,即递归最小平方法(RLS)、加权递归最小平方法(WRLS)和卡尔曼滤波法(KF)。通过对捕捉非合作目标的双臂空间机器人进行数值研究,证明了这些方法的有效性。此外,还将基于加速度的方法和基于速度的方法分别与 RLS、WRLS 和 KF 方法进行了比较。还对底座与目标、底座与机器人的质量比以及目标角速度变化的影响进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint acceleration based adaptive reactionless manipulation of closed-loop multi-arm space robot in post-capture phase
Space robots will play a crucial role in on-orbit operations like refuelling, servicing, and capture of debris. This paper focuses on capturing a non-cooperative target using a multi-arm space robot and its post-capture control. In the post-capture phase, a target object gets rigidly attached to end-effectors, and arms get into a closed-loop configuration, resulting in added constraints. Further, due to a target object’s unknown inertial parameters, system behaviour becomes unpredictable and poses difficulty in achieving reactionless manipulation to minimize base attitude disturbance. We present acceleration-based adaptive reactionless manipulation in the post-capture phase considering the unknown inertial parameter of a target. The regressor form required for adapting the joint states is derived using the acceleration-based approach. To update unknown parameters recursively immediately after impact, three methods, namely, recursive least square (RLS), weighted recursive least square (WRLS), and Kalman filter (KF), are used and compared. The efficacy of these methods has been demonstrated by using numerical studies of a dual-arm space robot that captures a non-cooperative target. Further, the acceleration-based and the velocity-based approaches are individually compared with RLS, WRLS and KF methods. Investigations have also been carried out to study the effects of change in ratios of base-to-target and base-to-robot masses, as well as angular velocities of a target.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Astronautica
Acta Astronautica 工程技术-工程:宇航
CiteScore
7.20
自引率
22.90%
发文量
599
审稿时长
53 days
期刊介绍: Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to: The peaceful scientific exploration of space, Its exploitation for human welfare and progress, Conception, design, development and operation of space-borne and Earth-based systems, In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.
期刊最新文献
Editorial Board Publisher's note Damage estimation method for spacecraft protective structures exposed to hypervelocity impacts Spectral proper orthogonal decomposition of external flow at high Reynolds number Study on the current stability and performances of electrospray thruster by coaxial capillary emitters of hybrid highly conductive ionic liquids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1