流式主题模型中的词汇外处理和主题质量控制策略

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-10-28 DOI:10.1016/j.neucom.2024.128757
Tung Nguyen , Tung Pham , Linh Ngo Van, Ha-Bang Ban, Khoat Than
{"title":"流式主题模型中的词汇外处理和主题质量控制策略","authors":"Tung Nguyen ,&nbsp;Tung Pham ,&nbsp;Linh Ngo Van,&nbsp;Ha-Bang Ban,&nbsp;Khoat Than","doi":"10.1016/j.neucom.2024.128757","DOIUrl":null,"url":null,"abstract":"<div><div>Topic models have become ubiquitous tools for analyzing streaming data. However, existing streaming topic models suffer from several limitations when applied to real-world data streams. This includes the inability to accommodate evolving vocabularies and control topic quality throughout the streaming process. In this paper, we propose a novel streaming topic modeling approach that dynamically adapts to the changing nature of data streams. Our method leverages Byte-Pair Encoding embedding (BPEmb) to resolve the out-of-vocabulary problem that arises with new words in the stream. Additionally, we introduce a topic change variable that provides fine-grained control over topics’ parameter updates and present a preservation approach to retain high-coherence topics at each time step, helping preserve semantic quality. To further enhance model adaptability, our method allows dynamical adjustment of topic space size as needed. To the best of our knowledge, we are the first to address the expansion of vocabulary and maintain topic quality during the streaming process. Extensive experiments show the superior effectiveness of our method.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Out-of-vocabulary handling and topic quality control strategies in streaming topic models\",\"authors\":\"Tung Nguyen ,&nbsp;Tung Pham ,&nbsp;Linh Ngo Van,&nbsp;Ha-Bang Ban,&nbsp;Khoat Than\",\"doi\":\"10.1016/j.neucom.2024.128757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Topic models have become ubiquitous tools for analyzing streaming data. However, existing streaming topic models suffer from several limitations when applied to real-world data streams. This includes the inability to accommodate evolving vocabularies and control topic quality throughout the streaming process. In this paper, we propose a novel streaming topic modeling approach that dynamically adapts to the changing nature of data streams. Our method leverages Byte-Pair Encoding embedding (BPEmb) to resolve the out-of-vocabulary problem that arises with new words in the stream. Additionally, we introduce a topic change variable that provides fine-grained control over topics’ parameter updates and present a preservation approach to retain high-coherence topics at each time step, helping preserve semantic quality. To further enhance model adaptability, our method allows dynamical adjustment of topic space size as needed. To the best of our knowledge, we are the first to address the expansion of vocabulary and maintain topic quality during the streaming process. Extensive experiments show the superior effectiveness of our method.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224015285\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015285","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

主题模型已成为分析流数据的普遍工具。然而,现有的流式主题模型在应用于现实世界的数据流时存在一些局限性。这包括无法在整个流式处理过程中适应不断发展的词汇表和控制话题质量。在本文中,我们提出了一种新颖的流式主题建模方法,可动态适应数据流不断变化的性质。我们的方法利用字节对编码嵌入(BPEmb)来解决因数据流中出现新词而产生的词汇不足问题。此外,我们还引入了一个主题变化变量,对主题的参数更新进行精细控制,并提出了一种保存方法,在每个时间步骤中保留高一致性主题,帮助保持语义质量。为了进一步提高模型的适应性,我们的方法允许根据需要动态调整主题空间的大小。据我们所知,我们是第一个在流式处理过程中解决词汇扩展和保持主题质量的方法。广泛的实验表明,我们的方法非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Out-of-vocabulary handling and topic quality control strategies in streaming topic models
Topic models have become ubiquitous tools for analyzing streaming data. However, existing streaming topic models suffer from several limitations when applied to real-world data streams. This includes the inability to accommodate evolving vocabularies and control topic quality throughout the streaming process. In this paper, we propose a novel streaming topic modeling approach that dynamically adapts to the changing nature of data streams. Our method leverages Byte-Pair Encoding embedding (BPEmb) to resolve the out-of-vocabulary problem that arises with new words in the stream. Additionally, we introduce a topic change variable that provides fine-grained control over topics’ parameter updates and present a preservation approach to retain high-coherence topics at each time step, helping preserve semantic quality. To further enhance model adaptability, our method allows dynamical adjustment of topic space size as needed. To the best of our knowledge, we are the first to address the expansion of vocabulary and maintain topic quality during the streaming process. Extensive experiments show the superior effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
An efficient re-parameterization feature pyramid network on YOLOv8 to the detection of steel surface defect Editorial Board Multi-contrast image clustering via multi-resolution augmentation and momentum-output queues Augmented ELBO regularization for enhanced clustering in variational autoencoders Learning from different perspectives for regret reduction in reinforcement learning: A free energy approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1