{"title":"通过格拉斯曼二次赋值实现鲁棒仿射点匹配","authors":"Alexander Kolpakov , Michael Werman","doi":"10.1016/j.patrec.2024.09.016","DOIUrl":null,"url":null,"abstract":"<div><div>Robust Affine Matching with Grassmannians (RoAM) is a new algorithm to perform affine registration of point clouds. The algorithm is based on minimizing the Frobenius distance between two elements of the Grassmannian. For this purpose, an indefinite relaxation of the Quadratic Assignment Problem (QAP) is used, and several approaches to affine feature matching are studied and compared. Experiments demonstrate that RoAM is more robust to noise and point discrepancy than previous methods.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"186 ","pages":"Pages 265-271"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust affine point matching via quadratic assignment on Grassmannians\",\"authors\":\"Alexander Kolpakov , Michael Werman\",\"doi\":\"10.1016/j.patrec.2024.09.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Robust Affine Matching with Grassmannians (RoAM) is a new algorithm to perform affine registration of point clouds. The algorithm is based on minimizing the Frobenius distance between two elements of the Grassmannian. For this purpose, an indefinite relaxation of the Quadratic Assignment Problem (QAP) is used, and several approaches to affine feature matching are studied and compared. Experiments demonstrate that RoAM is more robust to noise and point discrepancy than previous methods.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"186 \",\"pages\":\"Pages 265-271\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002794\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002794","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Robust affine point matching via quadratic assignment on Grassmannians
Robust Affine Matching with Grassmannians (RoAM) is a new algorithm to perform affine registration of point clouds. The algorithm is based on minimizing the Frobenius distance between two elements of the Grassmannian. For this purpose, an indefinite relaxation of the Quadratic Assignment Problem (QAP) is used, and several approaches to affine feature matching are studied and compared. Experiments demonstrate that RoAM is more robust to noise and point discrepancy than previous methods.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.