Jiawan Chen , Tieshan Cao , Wei Xu , Jiahui Wu , Yebing Hu , Lamei Cao , Yue Zhang , Congqian Cheng , Jie Zhao
{"title":"基于 DD10 镍基单晶合金应力断裂特性和断裂特征的薄壁效应机理分析","authors":"Jiawan Chen , Tieshan Cao , Wei Xu , Jiahui Wu , Yebing Hu , Lamei Cao , Yue Zhang , Congqian Cheng , Jie Zhao","doi":"10.1016/j.matchar.2024.114494","DOIUrl":null,"url":null,"abstract":"<div><div>The stress rupture life and fracture characteristics of DD10 nickel-based single crystal alloy with different wall thicknesses were investigated. Stress rupture tests were performed on samples with wall thicknesses of 0.8 mm and 0.5 mm at 1000 °C/200 MPa and 1150 °C / 100 MPa. According to the experimental results, the thin wall effect was observed at both 1000 °C / 200 MPa and 1150 °C / 100 MPa. XRM (X-ray microscope) results show a larger proportion of large size cracks/voids in the 0.8 mm wall samples than in the 0.5 mm wall samples. Meanwhile, the C* values are smaller in the thicker wall samples than in the thinner wall samples for the same crack length. Combining the results of XRM and C* results speculate that a longer crack length and propagation time is required to achieve unstable propagation in thicker walled samples. This is one of the important reasons for the thin-wall effect.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114494"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of thin-wall effect mechanism based on stress rupture properties and fracture characteristics of DD10 Ni-based single-crystal alloy\",\"authors\":\"Jiawan Chen , Tieshan Cao , Wei Xu , Jiahui Wu , Yebing Hu , Lamei Cao , Yue Zhang , Congqian Cheng , Jie Zhao\",\"doi\":\"10.1016/j.matchar.2024.114494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The stress rupture life and fracture characteristics of DD10 nickel-based single crystal alloy with different wall thicknesses were investigated. Stress rupture tests were performed on samples with wall thicknesses of 0.8 mm and 0.5 mm at 1000 °C/200 MPa and 1150 °C / 100 MPa. According to the experimental results, the thin wall effect was observed at both 1000 °C / 200 MPa and 1150 °C / 100 MPa. XRM (X-ray microscope) results show a larger proportion of large size cracks/voids in the 0.8 mm wall samples than in the 0.5 mm wall samples. Meanwhile, the C* values are smaller in the thicker wall samples than in the thinner wall samples for the same crack length. Combining the results of XRM and C* results speculate that a longer crack length and propagation time is required to achieve unstable propagation in thicker walled samples. This is one of the important reasons for the thin-wall effect.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"218 \",\"pages\":\"Article 114494\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580324008751\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008751","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
摘要
研究了不同壁厚的 DD10 镍基单晶合金的应力断裂寿命和断裂特性。在 1000 °C/200 MPa 和 1150 °C/100 MPa 条件下,对壁厚分别为 0.8 mm 和 0.5 mm 的样品进行了应力断裂测试。实验结果表明,薄壁效应在 1000 °C / 200 MPa 和 1150 °C / 100 MPa 时均可观察到。XRM(X 射线显微镜)结果显示,与 0.5 毫米壁的样品相比,0.8 毫米壁的样品中大尺寸裂纹/空洞的比例更大。同时,在相同的裂缝长度下,壁厚较厚的样品的 C* 值小于壁薄的样品。结合 XRM 和 C* 的结果推测,在壁较厚的样品中,需要更长的裂纹长度和扩展时间才能实现不稳定扩展。这是产生薄壁效应的重要原因之一。
Analysis of thin-wall effect mechanism based on stress rupture properties and fracture characteristics of DD10 Ni-based single-crystal alloy
The stress rupture life and fracture characteristics of DD10 nickel-based single crystal alloy with different wall thicknesses were investigated. Stress rupture tests were performed on samples with wall thicknesses of 0.8 mm and 0.5 mm at 1000 °C/200 MPa and 1150 °C / 100 MPa. According to the experimental results, the thin wall effect was observed at both 1000 °C / 200 MPa and 1150 °C / 100 MPa. XRM (X-ray microscope) results show a larger proportion of large size cracks/voids in the 0.8 mm wall samples than in the 0.5 mm wall samples. Meanwhile, the C* values are smaller in the thicker wall samples than in the thinner wall samples for the same crack length. Combining the results of XRM and C* results speculate that a longer crack length and propagation time is required to achieve unstable propagation in thicker walled samples. This is one of the important reasons for the thin-wall effect.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.