Dariush Aligholizadeh, Wilson Turner, Landon Bechdel, Kameron Langford, Maksym Zhukovskyi, Mary Sajini Devadas
{"title":"利用柞树花提取物合成的表面增强拉曼散射金纳米颗粒","authors":"Dariush Aligholizadeh, Wilson Turner, Landon Bechdel, Kameron Langford, Maksym Zhukovskyi, Mary Sajini Devadas","doi":"10.1007/s11051-024-06170-5","DOIUrl":null,"url":null,"abstract":"<div><p>Non-spherical nanostructures such as multilayered polygons and branched Au nanoparticles demonstrate high Surface-enhanced Raman scattering (SERS) performance due to their plasmonic nature and anisotropic morphology. Unfortunately, their syntheses often involve multiple steps and complex reagents. In particular, a conventional synthesis of Au nanoplatelets (AuNPt) involves a toxic cationic surfactant that should be substituted with more ecologically friendly reagents. Herein, we demonstrate the synthesis of AuNPt utilizing organic biomolecules from the plant <i>Cercis Canadensis</i>. These SERS-capable AuNPt are also shown to undergo a distinctive structural modification through plasma-dependent etching of the nanoparticle. This etching allows, in high yield, the {111} facets to develop surface undulations and perforations through the entire structure that increases anisotropy. The AuNPt are demonstrated to be surfactant-free through the absence of hydrocarbons in the IR spectra and EDX measurements. The nanoplatelets displayed a 17.142 ± 1.193 × Raman to SERS peak enhancement, 4133% increase of the area under the curve, and a 1580% increase in the FWHM in the fingerprint 1341 cm<sup>−1</sup> peak of p-nitrothiophenol. Measurements were done in liquid- and solid-phase to demonstrate the versatility of the AuNPts.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface-enhanced Raman scattering gold nanoplatelets synthesized using extracts of the Cercis Canadensis flower\",\"authors\":\"Dariush Aligholizadeh, Wilson Turner, Landon Bechdel, Kameron Langford, Maksym Zhukovskyi, Mary Sajini Devadas\",\"doi\":\"10.1007/s11051-024-06170-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Non-spherical nanostructures such as multilayered polygons and branched Au nanoparticles demonstrate high Surface-enhanced Raman scattering (SERS) performance due to their plasmonic nature and anisotropic morphology. Unfortunately, their syntheses often involve multiple steps and complex reagents. In particular, a conventional synthesis of Au nanoplatelets (AuNPt) involves a toxic cationic surfactant that should be substituted with more ecologically friendly reagents. Herein, we demonstrate the synthesis of AuNPt utilizing organic biomolecules from the plant <i>Cercis Canadensis</i>. These SERS-capable AuNPt are also shown to undergo a distinctive structural modification through plasma-dependent etching of the nanoparticle. This etching allows, in high yield, the {111} facets to develop surface undulations and perforations through the entire structure that increases anisotropy. The AuNPt are demonstrated to be surfactant-free through the absence of hydrocarbons in the IR spectra and EDX measurements. The nanoplatelets displayed a 17.142 ± 1.193 × Raman to SERS peak enhancement, 4133% increase of the area under the curve, and a 1580% increase in the FWHM in the fingerprint 1341 cm<sup>−1</sup> peak of p-nitrothiophenol. Measurements were done in liquid- and solid-phase to demonstrate the versatility of the AuNPts.</p></div>\",\"PeriodicalId\":653,\"journal\":{\"name\":\"Journal of Nanoparticle Research\",\"volume\":\"26 11\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticle Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11051-024-06170-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-024-06170-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Surface-enhanced Raman scattering gold nanoplatelets synthesized using extracts of the Cercis Canadensis flower
Non-spherical nanostructures such as multilayered polygons and branched Au nanoparticles demonstrate high Surface-enhanced Raman scattering (SERS) performance due to their plasmonic nature and anisotropic morphology. Unfortunately, their syntheses often involve multiple steps and complex reagents. In particular, a conventional synthesis of Au nanoplatelets (AuNPt) involves a toxic cationic surfactant that should be substituted with more ecologically friendly reagents. Herein, we demonstrate the synthesis of AuNPt utilizing organic biomolecules from the plant Cercis Canadensis. These SERS-capable AuNPt are also shown to undergo a distinctive structural modification through plasma-dependent etching of the nanoparticle. This etching allows, in high yield, the {111} facets to develop surface undulations and perforations through the entire structure that increases anisotropy. The AuNPt are demonstrated to be surfactant-free through the absence of hydrocarbons in the IR spectra and EDX measurements. The nanoplatelets displayed a 17.142 ± 1.193 × Raman to SERS peak enhancement, 4133% increase of the area under the curve, and a 1580% increase in the FWHM in the fingerprint 1341 cm−1 peak of p-nitrothiophenol. Measurements were done in liquid- and solid-phase to demonstrate the versatility of the AuNPts.
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.