Tiffany A. Shaw, Osamu Miyawaki, Hsing-Hung Chou, Russell Blackport
{"title":"快-变-快解释了气候变化导致高层喷流减弱的原因","authors":"Tiffany A. Shaw, Osamu Miyawaki, Hsing-Hung Chou, Russell Blackport","doi":"10.1038/s43247-024-01819-4","DOIUrl":null,"url":null,"abstract":"Earth’s upper-level jet streams primarily flow in the eastward direction. They often exhibit a north-south component or waviness connected to extreme weather at the surface. Recently the upper-level eastward jet stream was found to exhibit a fast-get-faster response under climate change explained by the impact of the nonlinear Clausius-Clapeyron relation on the latitudinal density contrast. Here we show the fast-get-faster mechanism also applies to the upper-level north-south jet stream wind and the longitudinal density contrast, implying increased waviness under climate change. Arctic Sea ice loss, which has been proposed as a driver of increased waviness, cannot explain the response. It leads to a fast-get-slower waviness response at all vertical levels. We demonstrate the fast-get-faster waviness signal has emerged in reanalysis data in the Southern Hemisphere but not yet in the Northern Hemisphere. The results show the fast-get-faster mechanism explains upper-level waviness changes and highlights a tug of war between upper- and mid-level waviness under climate change. Climate change causes upper-level jet stream waviness to increase in both hemispheres, with extreme southward and northward excursions increasing faster than the mean, according to results from a fast-get-faster mechanism connecting waviness to density contrast changes.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-10"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01819-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Fast-get-faster explains wavier upper-level jet stream under climate change\",\"authors\":\"Tiffany A. Shaw, Osamu Miyawaki, Hsing-Hung Chou, Russell Blackport\",\"doi\":\"10.1038/s43247-024-01819-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earth’s upper-level jet streams primarily flow in the eastward direction. They often exhibit a north-south component or waviness connected to extreme weather at the surface. Recently the upper-level eastward jet stream was found to exhibit a fast-get-faster response under climate change explained by the impact of the nonlinear Clausius-Clapeyron relation on the latitudinal density contrast. Here we show the fast-get-faster mechanism also applies to the upper-level north-south jet stream wind and the longitudinal density contrast, implying increased waviness under climate change. Arctic Sea ice loss, which has been proposed as a driver of increased waviness, cannot explain the response. It leads to a fast-get-slower waviness response at all vertical levels. We demonstrate the fast-get-faster waviness signal has emerged in reanalysis data in the Southern Hemisphere but not yet in the Northern Hemisphere. The results show the fast-get-faster mechanism explains upper-level waviness changes and highlights a tug of war between upper- and mid-level waviness under climate change. Climate change causes upper-level jet stream waviness to increase in both hemispheres, with extreme southward and northward excursions increasing faster than the mean, according to results from a fast-get-faster mechanism connecting waviness to density contrast changes.\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43247-024-01819-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s43247-024-01819-4\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01819-4","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Fast-get-faster explains wavier upper-level jet stream under climate change
Earth’s upper-level jet streams primarily flow in the eastward direction. They often exhibit a north-south component or waviness connected to extreme weather at the surface. Recently the upper-level eastward jet stream was found to exhibit a fast-get-faster response under climate change explained by the impact of the nonlinear Clausius-Clapeyron relation on the latitudinal density contrast. Here we show the fast-get-faster mechanism also applies to the upper-level north-south jet stream wind and the longitudinal density contrast, implying increased waviness under climate change. Arctic Sea ice loss, which has been proposed as a driver of increased waviness, cannot explain the response. It leads to a fast-get-slower waviness response at all vertical levels. We demonstrate the fast-get-faster waviness signal has emerged in reanalysis data in the Southern Hemisphere but not yet in the Northern Hemisphere. The results show the fast-get-faster mechanism explains upper-level waviness changes and highlights a tug of war between upper- and mid-level waviness under climate change. Climate change causes upper-level jet stream waviness to increase in both hemispheres, with extreme southward and northward excursions increasing faster than the mean, according to results from a fast-get-faster mechanism connecting waviness to density contrast changes.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.