Ting Su, Wenjun Liu, Hao Xu, Huilong Chen, Kin Long Wong, Wanru Zhang, Qingting Su, Tongxin Wang, Shanlei Xu, Xingting Liu, Weiwei Lv, Renyong Geng, Jun Yin, Xin Song
{"title":"掺入双膦酸的自组装空穴传输材料用于镍氧化物基包晶石太阳能电池的双缺陷钝化","authors":"Ting Su, Wenjun Liu, Hao Xu, Huilong Chen, Kin Long Wong, Wanru Zhang, Qingting Su, Tongxin Wang, Shanlei Xu, Xingting Liu, Weiwei Lv, Renyong Geng, Jun Yin, Xin Song","doi":"10.1039/d4ta05776g","DOIUrl":null,"url":null,"abstract":"The efficiency and stability of nickel oxide (NiOx)-based perovskite solar cells (PSCs) are critically hindered by defects and suboptimal charge transfer at the interface between perovskite crystals and the NiOx layer. In this study, we introduce a self-assembled hole transport material, D-3PACz, featuring bisphosphonic acid anchoring groups, to address these challenges. D-3PACz is proved to be effective in improving the surface properties of nickel oxide, optimizing the energy level alignment, and enhancing hole extraction capability. Meanwhile, the robust interaction between phosphonic acid and the perovskite layer enables D-3PACz to effectively direct the growth of perovskite crystals. These findings result in devices exhibiting reduced non-radiative recombination losses, lower defect-state densities, and enhanced hole extraction performance, culminating in a comprehensive improvement in device parameters. Excitingly, the D-3PACz based devices obtain a champion PCE of 23.8% with elevated stability. Our work presents the superiority of the proposed D-3PACz material for efficient and stable PSCs.","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Assembling Hole-Transport Material Incorporating Biphosphonic Acid for Dual-Defect Passivation in NiOx-Based Perovskite Solar Cells\",\"authors\":\"Ting Su, Wenjun Liu, Hao Xu, Huilong Chen, Kin Long Wong, Wanru Zhang, Qingting Su, Tongxin Wang, Shanlei Xu, Xingting Liu, Weiwei Lv, Renyong Geng, Jun Yin, Xin Song\",\"doi\":\"10.1039/d4ta05776g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficiency and stability of nickel oxide (NiOx)-based perovskite solar cells (PSCs) are critically hindered by defects and suboptimal charge transfer at the interface between perovskite crystals and the NiOx layer. In this study, we introduce a self-assembled hole transport material, D-3PACz, featuring bisphosphonic acid anchoring groups, to address these challenges. D-3PACz is proved to be effective in improving the surface properties of nickel oxide, optimizing the energy level alignment, and enhancing hole extraction capability. Meanwhile, the robust interaction between phosphonic acid and the perovskite layer enables D-3PACz to effectively direct the growth of perovskite crystals. These findings result in devices exhibiting reduced non-radiative recombination losses, lower defect-state densities, and enhanced hole extraction performance, culminating in a comprehensive improvement in device parameters. Excitingly, the D-3PACz based devices obtain a champion PCE of 23.8% with elevated stability. Our work presents the superiority of the proposed D-3PACz material for efficient and stable PSCs.\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ta05776g\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta05776g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-Assembling Hole-Transport Material Incorporating Biphosphonic Acid for Dual-Defect Passivation in NiOx-Based Perovskite Solar Cells
The efficiency and stability of nickel oxide (NiOx)-based perovskite solar cells (PSCs) are critically hindered by defects and suboptimal charge transfer at the interface between perovskite crystals and the NiOx layer. In this study, we introduce a self-assembled hole transport material, D-3PACz, featuring bisphosphonic acid anchoring groups, to address these challenges. D-3PACz is proved to be effective in improving the surface properties of nickel oxide, optimizing the energy level alignment, and enhancing hole extraction capability. Meanwhile, the robust interaction between phosphonic acid and the perovskite layer enables D-3PACz to effectively direct the growth of perovskite crystals. These findings result in devices exhibiting reduced non-radiative recombination losses, lower defect-state densities, and enhanced hole extraction performance, culminating in a comprehensive improvement in device parameters. Excitingly, the D-3PACz based devices obtain a champion PCE of 23.8% with elevated stability. Our work presents the superiority of the proposed D-3PACz material for efficient and stable PSCs.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.