揭示锂硫电池固液界面上 Li2S 晶体的自动催化生长过程

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-04 DOI:10.1038/s41467-024-53797-y
Zhen Wu, Mingliang Liu, Wenfeng He, Tong Guo, Wei Tong, Erjun Kan, Xiaoping Ouyang, Fen Qiao, Junfeng Wang, Xueliang Sun, Xin Wang, Junwu Zhu, Ali Coskun, Yongsheng Fu
{"title":"揭示锂硫电池固液界面上 Li2S 晶体的自动催化生长过程","authors":"Zhen Wu, Mingliang Liu, Wenfeng He, Tong Guo, Wei Tong, Erjun Kan, Xiaoping Ouyang, Fen Qiao, Junfeng Wang, Xueliang Sun, Xin Wang, Junwu Zhu, Ali Coskun, Yongsheng Fu","doi":"10.1038/s41467-024-53797-y","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalysts are extensively employed to suppress the shuttling effect in lithium-sulfur (Li-S) batteries. However, it remains challenging to probe the sulfur redox reactions and mechanism at the electrocatalyst/LiPS interface after the active sites are covered by the solid discharge products Li<sub>2</sub>S/Li<sub>2</sub>S<sub>2</sub>. Here, we demonstrate the intrinsic autocatalytic activity of the Li<sub>2</sub>S (100) plane towards lithium polysulfides on single-atom nickel (SANi) electrocatalysts. Guided by theoretical models and experimental data, it is concluded that LiPS dissociates into Li<sub>2</sub>S<sub>2</sub> and short-chain LiPS on the Li<sub>2</sub>S (100) plane. Subsequently, Li<sub>2</sub>S<sub>2</sub> undergoes further lithiation to Li<sub>2</sub>S on the Li<sub>2</sub>S (100) surface, generating a new Li<sub>2</sub>S (100) layer, thus enabling the autocatalytic formation of a new Li<sub>2</sub>S (100) surface. Benefiting from the autocatalytic growth of Li<sub>2</sub>S, the concentration of LiPS in the electrolyte remains at a lower level, enabling Li-S batteries under high loading and low electrolyte conditions to exhibit superior electrochemical performance.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the autocatalytic growth of Li2S crystals at the solid-liquid interface in lithium-sulfur batteries\",\"authors\":\"Zhen Wu, Mingliang Liu, Wenfeng He, Tong Guo, Wei Tong, Erjun Kan, Xiaoping Ouyang, Fen Qiao, Junfeng Wang, Xueliang Sun, Xin Wang, Junwu Zhu, Ali Coskun, Yongsheng Fu\",\"doi\":\"10.1038/s41467-024-53797-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrocatalysts are extensively employed to suppress the shuttling effect in lithium-sulfur (Li-S) batteries. However, it remains challenging to probe the sulfur redox reactions and mechanism at the electrocatalyst/LiPS interface after the active sites are covered by the solid discharge products Li<sub>2</sub>S/Li<sub>2</sub>S<sub>2</sub>. Here, we demonstrate the intrinsic autocatalytic activity of the Li<sub>2</sub>S (100) plane towards lithium polysulfides on single-atom nickel (SANi) electrocatalysts. Guided by theoretical models and experimental data, it is concluded that LiPS dissociates into Li<sub>2</sub>S<sub>2</sub> and short-chain LiPS on the Li<sub>2</sub>S (100) plane. Subsequently, Li<sub>2</sub>S<sub>2</sub> undergoes further lithiation to Li<sub>2</sub>S on the Li<sub>2</sub>S (100) surface, generating a new Li<sub>2</sub>S (100) layer, thus enabling the autocatalytic formation of a new Li<sub>2</sub>S (100) surface. Benefiting from the autocatalytic growth of Li<sub>2</sub>S, the concentration of LiPS in the electrolyte remains at a lower level, enabling Li-S batteries under high loading and low electrolyte conditions to exhibit superior electrochemical performance.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-53797-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53797-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

电催化剂被广泛用于抑制锂硫(Li-S)电池中的穿梭效应。然而,当活性位点被固态放电产物 Li2S/Li2S2 覆盖后,要探究电催化剂/锂聚苯乙烯界面上的硫氧化还原反应及其机理仍具有挑战性。在此,我们展示了单原子镍 (SANi) 电催化剂上 Li2S (100) 平面对多硫化锂的内在自催化活性。在理论模型和实验数据的指导下,我们得出结论:LiPS 在 Li2S (100) 平面上解离成 Li2S2 和短链 LiPS。随后,Li2S2 在 Li2S(100)表面进一步锂化为 Li2S,生成新的 Li2S(100)层,从而自催化形成新的 Li2S(100)表面。得益于 Li2S 的自催化生长,电解液中的 LiPS 浓度保持在较低水平,从而使锂离子电池在高负载和低电解液条件下表现出卓越的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling the autocatalytic growth of Li2S crystals at the solid-liquid interface in lithium-sulfur batteries

Electrocatalysts are extensively employed to suppress the shuttling effect in lithium-sulfur (Li-S) batteries. However, it remains challenging to probe the sulfur redox reactions and mechanism at the electrocatalyst/LiPS interface after the active sites are covered by the solid discharge products Li2S/Li2S2. Here, we demonstrate the intrinsic autocatalytic activity of the Li2S (100) plane towards lithium polysulfides on single-atom nickel (SANi) electrocatalysts. Guided by theoretical models and experimental data, it is concluded that LiPS dissociates into Li2S2 and short-chain LiPS on the Li2S (100) plane. Subsequently, Li2S2 undergoes further lithiation to Li2S on the Li2S (100) surface, generating a new Li2S (100) layer, thus enabling the autocatalytic formation of a new Li2S (100) surface. Benefiting from the autocatalytic growth of Li2S, the concentration of LiPS in the electrolyte remains at a lower level, enabling Li-S batteries under high loading and low electrolyte conditions to exhibit superior electrochemical performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
High-performance photon-driven DC motor system The Arabidopsis receptor-like kinase WAKL4 limits cadmium uptake via phosphorylation and degradation of NRAMP1 transporter Unveiling the autocatalytic growth of Li2S crystals at the solid-liquid interface in lithium-sulfur batteries A Catalogue of Structural Variation across Ancestrally Diverse Asian Genomes A single-photon emitter coupled to a phononic-crystal resonator in the resolved-sideband regime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1