Teofana Chonova, Steffen Ruppe, Ingrid Langlois, Dorrit S. Griesshaber, Martin Loos, Mark Honti, Kathrin Fenner, Heinz Singer
{"title":"揭开欧洲大河工业排放的神秘面纱:高频测量数据挖掘的启示","authors":"Teofana Chonova, Steffen Ruppe, Ingrid Langlois, Dorrit S. Griesshaber, Martin Loos, Mark Honti, Kathrin Fenner, Heinz Singer","doi":"10.1016/j.watres.2024.122745","DOIUrl":null,"url":null,"abstract":"Despite the tremendous efforts to improve river water quality, chemical contamination remains a significant issue. Besides well-known contaminants, in recent years, pollutants of industrial origin received increasing attention because of the huge knowledge gap regarding their occurrence, fate and environmental risks. Moreover, such pollutants often exhibit high concentration fluctuations over time, which makes them less predictable and measurable with classical short-time campaigns.This study provides insights into the different sources of chemical contamination of the Rhine River based on temporal high-frequency LC-HRMS monitoring data from a single location. A newly developed prioritization strategy selected nearly 3000 substances as potentially major contaminants. A novel classification analysis based on temporal behavior identified 53% of these compounds (accounting for 62% of the time-integrated intensity recorded in the dataset) as originating from irregular emission sources. Irregular emissions can originate from industrial production cycles. After delimiting other potential irregular sources, we have strong evidence indicating that a considerable share of the irregular emissions likely comes from industrial activities. This finding is supported by the structural elucidation of sixteen irregularly emitted substances, for which the industrial origin was successfully confirmed. Those compounds include 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid and 4-(dimethylamino)-2,2-diphenylpentanenitrile. In addition, 40 other compounds exhibited temporal emission patterns similar to the sixteen industrial compounds, which strongly suggests a common contamination source. Finally, 100 top-ranking compounds were selected for further structural elucidation and emission reduction measures. The computational approach outlined within this study can be effectively applied in other large river catchments to identify unknown contaminants stemming from industrial sources.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"87 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling industrial emissions in a large European river: Insights from data mining of high-frequency measurements\",\"authors\":\"Teofana Chonova, Steffen Ruppe, Ingrid Langlois, Dorrit S. Griesshaber, Martin Loos, Mark Honti, Kathrin Fenner, Heinz Singer\",\"doi\":\"10.1016/j.watres.2024.122745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the tremendous efforts to improve river water quality, chemical contamination remains a significant issue. Besides well-known contaminants, in recent years, pollutants of industrial origin received increasing attention because of the huge knowledge gap regarding their occurrence, fate and environmental risks. Moreover, such pollutants often exhibit high concentration fluctuations over time, which makes them less predictable and measurable with classical short-time campaigns.This study provides insights into the different sources of chemical contamination of the Rhine River based on temporal high-frequency LC-HRMS monitoring data from a single location. A newly developed prioritization strategy selected nearly 3000 substances as potentially major contaminants. A novel classification analysis based on temporal behavior identified 53% of these compounds (accounting for 62% of the time-integrated intensity recorded in the dataset) as originating from irregular emission sources. Irregular emissions can originate from industrial production cycles. After delimiting other potential irregular sources, we have strong evidence indicating that a considerable share of the irregular emissions likely comes from industrial activities. This finding is supported by the structural elucidation of sixteen irregularly emitted substances, for which the industrial origin was successfully confirmed. Those compounds include 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid and 4-(dimethylamino)-2,2-diphenylpentanenitrile. In addition, 40 other compounds exhibited temporal emission patterns similar to the sixteen industrial compounds, which strongly suggests a common contamination source. Finally, 100 top-ranking compounds were selected for further structural elucidation and emission reduction measures. The computational approach outlined within this study can be effectively applied in other large river catchments to identify unknown contaminants stemming from industrial sources.\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.watres.2024.122745\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122745","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Unveiling industrial emissions in a large European river: Insights from data mining of high-frequency measurements
Despite the tremendous efforts to improve river water quality, chemical contamination remains a significant issue. Besides well-known contaminants, in recent years, pollutants of industrial origin received increasing attention because of the huge knowledge gap regarding their occurrence, fate and environmental risks. Moreover, such pollutants often exhibit high concentration fluctuations over time, which makes them less predictable and measurable with classical short-time campaigns.This study provides insights into the different sources of chemical contamination of the Rhine River based on temporal high-frequency LC-HRMS monitoring data from a single location. A newly developed prioritization strategy selected nearly 3000 substances as potentially major contaminants. A novel classification analysis based on temporal behavior identified 53% of these compounds (accounting for 62% of the time-integrated intensity recorded in the dataset) as originating from irregular emission sources. Irregular emissions can originate from industrial production cycles. After delimiting other potential irregular sources, we have strong evidence indicating that a considerable share of the irregular emissions likely comes from industrial activities. This finding is supported by the structural elucidation of sixteen irregularly emitted substances, for which the industrial origin was successfully confirmed. Those compounds include 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid and 4-(dimethylamino)-2,2-diphenylpentanenitrile. In addition, 40 other compounds exhibited temporal emission patterns similar to the sixteen industrial compounds, which strongly suggests a common contamination source. Finally, 100 top-ranking compounds were selected for further structural elucidation and emission reduction measures. The computational approach outlined within this study can be effectively applied in other large river catchments to identify unknown contaminants stemming from industrial sources.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.