高强度超声波改变白指小米蛋白质组分的技术功能和结构特性。

IF 3.2 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY Journal of Food Science Pub Date : 2024-11-04 DOI:10.1111/1750-3841.17491
Eleonora Shylla, C K Sunil, Ashish Rawson, N Venkatachalapathy
{"title":"高强度超声波改变白指小米蛋白质组分的技术功能和结构特性。","authors":"Eleonora Shylla, C K Sunil, Ashish Rawson, N Venkatachalapathy","doi":"10.1111/1750-3841.17491","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, albumin, globulin, and glutelin were extracted from white finger millet, and their amino acid content, functional and structural properties were investigated. The protein concentration of albumin, globulin, and glutelin were 76.01%, 74.32%, and 69.55%, respectively. The results showed that all the fractions had a significant amount of essential amino acids. Aqueous protein dispersions (10%, w/v) were treated for 12 min at different ultrasound power levels (100, 200, and 300 W). The solubility, emulsifying, and foaming properties of albumin and glutelin were significantly (p < 0.05) improved after ultrasound treatment (20 kHz) which indicates that ultrasound could unfold protein aggregates. A decrease in particle size, increase in surface hydrophobicity, and zeta potential correlated with improved functional properties. Ultrasound treatment reduced the size of all proteins except for fractions at 300 W and also sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a significant change in the molecular weight of albumin and glutelin at 300 W. Scanning electron microscopy of treated protein fraction showed distinctive microstructure with irregular structure compared to untreated protein fraction. Although Fourier transform infrared spectroscopy spectra of proteins were similar after ultrasonication, a partial increase in the intensity of the Amide A band was observed. In conclusion, the ultrasound-treated protein fraction can be used as a high-value plant-based emulsifier.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-intensity ultrasound modification of techno-functional and structural properties of white finger millet protein fractions.\",\"authors\":\"Eleonora Shylla, C K Sunil, Ashish Rawson, N Venkatachalapathy\",\"doi\":\"10.1111/1750-3841.17491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, albumin, globulin, and glutelin were extracted from white finger millet, and their amino acid content, functional and structural properties were investigated. The protein concentration of albumin, globulin, and glutelin were 76.01%, 74.32%, and 69.55%, respectively. The results showed that all the fractions had a significant amount of essential amino acids. Aqueous protein dispersions (10%, w/v) were treated for 12 min at different ultrasound power levels (100, 200, and 300 W). The solubility, emulsifying, and foaming properties of albumin and glutelin were significantly (p < 0.05) improved after ultrasound treatment (20 kHz) which indicates that ultrasound could unfold protein aggregates. A decrease in particle size, increase in surface hydrophobicity, and zeta potential correlated with improved functional properties. Ultrasound treatment reduced the size of all proteins except for fractions at 300 W and also sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a significant change in the molecular weight of albumin and glutelin at 300 W. Scanning electron microscopy of treated protein fraction showed distinctive microstructure with irregular structure compared to untreated protein fraction. Although Fourier transform infrared spectroscopy spectra of proteins were similar after ultrasonication, a partial increase in the intensity of the Amide A band was observed. In conclusion, the ultrasound-treated protein fraction can be used as a high-value plant-based emulsifier.</p>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1750-3841.17491\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1750-3841.17491","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究从白小米中提取了白蛋白、球蛋白和谷蛋白,并对其氨基酸含量、功能和结构特性进行了研究。白蛋白、球蛋白和谷蛋白的蛋白质浓度分别为 76.01%、74.32% 和 69.55%。结果表明,所有馏分都含有大量的必需氨基酸。在不同的超声功率水平(100、200 和 300 W)下处理水性蛋白质分散液(10%,w/v)12 分钟。白蛋白和谷蛋白的溶解性、乳化性和发泡性在不同的超声功率下有显著的差异(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-intensity ultrasound modification of techno-functional and structural properties of white finger millet protein fractions.

In this study, albumin, globulin, and glutelin were extracted from white finger millet, and their amino acid content, functional and structural properties were investigated. The protein concentration of albumin, globulin, and glutelin were 76.01%, 74.32%, and 69.55%, respectively. The results showed that all the fractions had a significant amount of essential amino acids. Aqueous protein dispersions (10%, w/v) were treated for 12 min at different ultrasound power levels (100, 200, and 300 W). The solubility, emulsifying, and foaming properties of albumin and glutelin were significantly (p < 0.05) improved after ultrasound treatment (20 kHz) which indicates that ultrasound could unfold protein aggregates. A decrease in particle size, increase in surface hydrophobicity, and zeta potential correlated with improved functional properties. Ultrasound treatment reduced the size of all proteins except for fractions at 300 W and also sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a significant change in the molecular weight of albumin and glutelin at 300 W. Scanning electron microscopy of treated protein fraction showed distinctive microstructure with irregular structure compared to untreated protein fraction. Although Fourier transform infrared spectroscopy spectra of proteins were similar after ultrasonication, a partial increase in the intensity of the Amide A band was observed. In conclusion, the ultrasound-treated protein fraction can be used as a high-value plant-based emulsifier.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Science
Journal of Food Science 工程技术-食品科技
CiteScore
7.10
自引率
2.60%
发文量
412
审稿时长
3.1 months
期刊介绍: The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science. The range of topics covered in the journal include: -Concise Reviews and Hypotheses in Food Science -New Horizons in Food Research -Integrated Food Science -Food Chemistry -Food Engineering, Materials Science, and Nanotechnology -Food Microbiology and Safety -Sensory and Consumer Sciences -Health, Nutrition, and Food -Toxicology and Chemical Food Safety The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.
期刊最新文献
Plant-based mince texture: A review of the sensory literature with view to informing new product development. Preparation of functional supplement powder using nanoliposome-containing marine bioactive compounds. Trypsin from digestive tract of harpiosquillid mantis shrimp: Molecular characteristics and the inhibition by chitooligosaccharide and its catechin conjugate. Weizmannia coagulans BC99 affects valeric acid production via regulating gut microbiota to ameliorate inflammation and oxidative stress responses in Helicobacter pylori mice. A nonlinear association between total selenium intake and blood selenium concentration: An analysis based on the National Health and Nutrition Examination Survey 2011-2018.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1