{"title":"稀磁半导体(Ga, Mn)As 薄膜中的室温铁磁性 MnGa 纳米粒子:制备与表征。","authors":"Juanmei Duan, Zichao Li, Viktor Begeza, Shuangchen Ruan, Yujia Zeng, Wei Tang, Hsu-Sheng Tsai","doi":"10.1088/1361-6528/ad8e6d","DOIUrl":null,"url":null,"abstract":"<p><p>The diluted magnetic semiconductor, (Ga, Mn) As, with the unique advantage of manipulating the spin and charge was widely investigated in the scientific community and considered as a potential material for the spintronic devices. However, its Curie temperature (Tc), which is limited to around 200 K, hinders the research progress of diluted magnetic semiconductors for potential device applications. Herein, we propose an approach to prepare the MnGa nanoparticles embedded in (Ga, Mn)As matrix using the magnetron sputtering deposition of Mn on GaAs surface, followed by the nano-second pulsed laser annealing, which gives a Tc above 400 K. We demonstrate that the MnGa nanoparticles are only formed in (Ga, Mn)As during the nano-second pulsed laser annealing under a critical range of energy density (0.4-0.5 J/cm2). This method for preparing the hybrid system of ferromagnetic metal/dilute magnetic semiconductor builds a platform for exploring the interesting spin transport phenomenon and is promising for the application of spintronic devices.
.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room-temperature ferromagnetic MnGa nanoparticles in dilute magnetic semiconductor (Ga, Mn)As thin film: preparation and characterization.\",\"authors\":\"Juanmei Duan, Zichao Li, Viktor Begeza, Shuangchen Ruan, Yujia Zeng, Wei Tang, Hsu-Sheng Tsai\",\"doi\":\"10.1088/1361-6528/ad8e6d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The diluted magnetic semiconductor, (Ga, Mn) As, with the unique advantage of manipulating the spin and charge was widely investigated in the scientific community and considered as a potential material for the spintronic devices. However, its Curie temperature (Tc), which is limited to around 200 K, hinders the research progress of diluted magnetic semiconductors for potential device applications. Herein, we propose an approach to prepare the MnGa nanoparticles embedded in (Ga, Mn)As matrix using the magnetron sputtering deposition of Mn on GaAs surface, followed by the nano-second pulsed laser annealing, which gives a Tc above 400 K. We demonstrate that the MnGa nanoparticles are only formed in (Ga, Mn)As during the nano-second pulsed laser annealing under a critical range of energy density (0.4-0.5 J/cm2). This method for preparing the hybrid system of ferromagnetic metal/dilute magnetic semiconductor builds a platform for exploring the interesting spin transport phenomenon and is promising for the application of spintronic devices.
.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad8e6d\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad8e6d","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Room-temperature ferromagnetic MnGa nanoparticles in dilute magnetic semiconductor (Ga, Mn)As thin film: preparation and characterization.
The diluted magnetic semiconductor, (Ga, Mn) As, with the unique advantage of manipulating the spin and charge was widely investigated in the scientific community and considered as a potential material for the spintronic devices. However, its Curie temperature (Tc), which is limited to around 200 K, hinders the research progress of diluted magnetic semiconductors for potential device applications. Herein, we propose an approach to prepare the MnGa nanoparticles embedded in (Ga, Mn)As matrix using the magnetron sputtering deposition of Mn on GaAs surface, followed by the nano-second pulsed laser annealing, which gives a Tc above 400 K. We demonstrate that the MnGa nanoparticles are only formed in (Ga, Mn)As during the nano-second pulsed laser annealing under a critical range of energy density (0.4-0.5 J/cm2). This method for preparing the hybrid system of ferromagnetic metal/dilute magnetic semiconductor builds a platform for exploring the interesting spin transport phenomenon and is promising for the application of spintronic devices.
.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.