Nishant Kumar Choudhary, Shalini Gupta, Gourav Das, Avijit Sahoo, S. Harikrishna, Surajit Sinha and Kiran R. Gore*,
{"title":"利用合成开启型红色荧光蛋白发色团选择性识别二聚体 NG16 平行 G 型四重结构","authors":"Nishant Kumar Choudhary, Shalini Gupta, Gourav Das, Avijit Sahoo, S. Harikrishna, Surajit Sinha and Kiran R. Gore*, ","doi":"10.1021/acs.biochem.4c0040710.1021/acs.biochem.4c00407","DOIUrl":null,"url":null,"abstract":"<p >Red fluorescent protein (RFP)-based fluorescent probes that can selectively interact with specific nucleic acids are of great importance for therapeutic and bioimaging applications. Herein, we have reported the synthesis of RFP chromophores for selective recognition of G-quadruplex nucleic acids in vitro and ex vivo. We identified <b>DFHBI-DM</b> as a fluorescent turn-on probe that binds to the dimeric NG16 parallel quadruplex with superior selectivity and sensitivity over various parallel, antiparallel, and hybrid topologies. The binding of <b>DFHBI-DM</b> to NG16 exhibited excellent photophysical properties, including high binding affinity, large Stokes shift, high photostability, and quantum yield. The MD simulation study supports the 1:1 binding stoichiometry. It confirms the planar conformation of <b>DFHBI-DM</b>, which makes strong binding interactions with a flat quartet of NG16 compared to other antiparallel and hybrid topologies. The cell imaging and MTT assays revealed that <b>DFHBI-DM</b> is a biocompatible and efficient fluorescent probe for intracellular imaging of NG16. Overall, these results demonstrated that <b>DFHBI-DM</b> could be an effective fluorescent G4-stabilizing agent for the dimeric NG16 parallel quadruplex, and it could be a promising candidate for further exploration of bioimaging and therapeutic applications.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective Recognition of the Dimeric NG16 Parallel G-Quadruplex Structure Using Synthetic Turn-On Red Fluorescent Protein Chromophore\",\"authors\":\"Nishant Kumar Choudhary, Shalini Gupta, Gourav Das, Avijit Sahoo, S. Harikrishna, Surajit Sinha and Kiran R. Gore*, \",\"doi\":\"10.1021/acs.biochem.4c0040710.1021/acs.biochem.4c00407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Red fluorescent protein (RFP)-based fluorescent probes that can selectively interact with specific nucleic acids are of great importance for therapeutic and bioimaging applications. Herein, we have reported the synthesis of RFP chromophores for selective recognition of G-quadruplex nucleic acids in vitro and ex vivo. We identified <b>DFHBI-DM</b> as a fluorescent turn-on probe that binds to the dimeric NG16 parallel quadruplex with superior selectivity and sensitivity over various parallel, antiparallel, and hybrid topologies. The binding of <b>DFHBI-DM</b> to NG16 exhibited excellent photophysical properties, including high binding affinity, large Stokes shift, high photostability, and quantum yield. The MD simulation study supports the 1:1 binding stoichiometry. It confirms the planar conformation of <b>DFHBI-DM</b>, which makes strong binding interactions with a flat quartet of NG16 compared to other antiparallel and hybrid topologies. The cell imaging and MTT assays revealed that <b>DFHBI-DM</b> is a biocompatible and efficient fluorescent probe for intracellular imaging of NG16. Overall, these results demonstrated that <b>DFHBI-DM</b> could be an effective fluorescent G4-stabilizing agent for the dimeric NG16 parallel quadruplex, and it could be a promising candidate for further exploration of bioimaging and therapeutic applications.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00407\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00407","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Selective Recognition of the Dimeric NG16 Parallel G-Quadruplex Structure Using Synthetic Turn-On Red Fluorescent Protein Chromophore
Red fluorescent protein (RFP)-based fluorescent probes that can selectively interact with specific nucleic acids are of great importance for therapeutic and bioimaging applications. Herein, we have reported the synthesis of RFP chromophores for selective recognition of G-quadruplex nucleic acids in vitro and ex vivo. We identified DFHBI-DM as a fluorescent turn-on probe that binds to the dimeric NG16 parallel quadruplex with superior selectivity and sensitivity over various parallel, antiparallel, and hybrid topologies. The binding of DFHBI-DM to NG16 exhibited excellent photophysical properties, including high binding affinity, large Stokes shift, high photostability, and quantum yield. The MD simulation study supports the 1:1 binding stoichiometry. It confirms the planar conformation of DFHBI-DM, which makes strong binding interactions with a flat quartet of NG16 compared to other antiparallel and hybrid topologies. The cell imaging and MTT assays revealed that DFHBI-DM is a biocompatible and efficient fluorescent probe for intracellular imaging of NG16. Overall, these results demonstrated that DFHBI-DM could be an effective fluorescent G4-stabilizing agent for the dimeric NG16 parallel quadruplex, and it could be a promising candidate for further exploration of bioimaging and therapeutic applications.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.