主题建模是对 2022-2023 年俄乌战争新闻报道进行框架分析的一种方法

IF 1.3 2区 文学 Q2 COMMUNICATION Language & Communication Pub Date : 2024-11-01 DOI:10.1016/j.langcom.2024.10.004
Anna Verbytska
{"title":"主题建模是对 2022-2023 年俄乌战争新闻报道进行框架分析的一种方法","authors":"Anna Verbytska","doi":"10.1016/j.langcom.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>This study critically analyses the representation of the Russia-Ukraine war in Western (the Euronews) and Eastern (the Kyiv Post) media discourses. It examines how media organisations shape narratives through strategic framing. Employing the Natural Language Processing technique – Topic Modelling – with a generative probabilistic model LDA and a transformer-based language model BERT, the study reveals generic frames elaborated by more specific extensions, shedding light on media portrayal of economy, public opinion, security &amp; defence, external regulations, policy evaluation, and health &amp; safety sectors. Through Named Entity Recognition with roBERTa, Sentiment Analysis with distilBERT, and Corpus Linguistics methods with LancsBox X, interpretation of these overarching frames provides a comprehensive analysis of the nuances in narratives, societal perceptions and policy decisions amidst the ongoing war.</div></div>","PeriodicalId":47575,"journal":{"name":"Language & Communication","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topic modelling as a method for framing analysis of news coverage of the Russia-Ukraine war in 2022–2023\",\"authors\":\"Anna Verbytska\",\"doi\":\"10.1016/j.langcom.2024.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study critically analyses the representation of the Russia-Ukraine war in Western (the Euronews) and Eastern (the Kyiv Post) media discourses. It examines how media organisations shape narratives through strategic framing. Employing the Natural Language Processing technique – Topic Modelling – with a generative probabilistic model LDA and a transformer-based language model BERT, the study reveals generic frames elaborated by more specific extensions, shedding light on media portrayal of economy, public opinion, security &amp; defence, external regulations, policy evaluation, and health &amp; safety sectors. Through Named Entity Recognition with roBERTa, Sentiment Analysis with distilBERT, and Corpus Linguistics methods with LancsBox X, interpretation of these overarching frames provides a comprehensive analysis of the nuances in narratives, societal perceptions and policy decisions amidst the ongoing war.</div></div>\",\"PeriodicalId\":47575,\"journal\":{\"name\":\"Language & Communication\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Language & Communication\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0271530924000661\",\"RegionNum\":2,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMMUNICATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language & Communication","FirstCategoryId":"98","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0271530924000661","RegionNum":2,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 0

摘要

本研究批判性地分析了西方(《欧洲新闻报》)和东方(《基辅邮报》)媒体对俄乌战争的表述。研究探讨了媒体组织如何通过战略框架塑造叙事。该研究采用自然语言处理技术--主题建模(Topic Modelling)--以及生成概率模型 LDA 和基于转换器的语言模型 BERT,揭示了由更具体的扩展部分所阐述的通用框架,揭示了媒体对经济、舆论、安全与国防、外部法规、政策评估以及健康与安全领域的描述。通过使用 roBERTa 进行命名实体识别,使用 distilBERT 进行情感分析,以及使用 LancsBox X 进行语料库语言学分析,对这些总体框架的解释提供了对正在进行的战争中的叙述、社会观念和政策决定的细微差别的全面分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topic modelling as a method for framing analysis of news coverage of the Russia-Ukraine war in 2022–2023
This study critically analyses the representation of the Russia-Ukraine war in Western (the Euronews) and Eastern (the Kyiv Post) media discourses. It examines how media organisations shape narratives through strategic framing. Employing the Natural Language Processing technique – Topic Modelling – with a generative probabilistic model LDA and a transformer-based language model BERT, the study reveals generic frames elaborated by more specific extensions, shedding light on media portrayal of economy, public opinion, security & defence, external regulations, policy evaluation, and health & safety sectors. Through Named Entity Recognition with roBERTa, Sentiment Analysis with distilBERT, and Corpus Linguistics methods with LancsBox X, interpretation of these overarching frames provides a comprehensive analysis of the nuances in narratives, societal perceptions and policy decisions amidst the ongoing war.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
6.70%
发文量
67
期刊介绍: This journal is unique in that it provides a forum devoted to the interdisciplinary study of language and communication. The investigation of language and its communicational functions is treated as a concern shared in common by those working in applied linguistics, child development, cultural studies, discourse analysis, intellectual history, legal studies, language evolution, linguistic anthropology, linguistics, philosophy, the politics of language, pragmatics, psychology, rhetoric, semiotics, and sociolinguistics. The journal invites contributions which explore the implications of current research for establishing common theoretical frameworks within which findings from different areas of study may be accommodated and interrelated. By focusing attention on the many ways in which language is integrated with other forms of communicational activity and interactional behaviour, it is intended to encourage approaches to the study of language and communication which are not restricted by existing disciplinary boundaries.
期刊最新文献
Topic modelling as a method for framing analysis of news coverage of the Russia-Ukraine war in 2022–2023 Question design and stance-taking in political interviews in Flemish news media Surprise as a knowledge emotion in research articles: Variation across disciplines, genders, geo-academic locations and time Gestural depictions in requests for objects “What a standard Taiwan Mandarin accent”: Online metalinguistic commentary on linguistic performances of non-native Chinese speakers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1