用酸改性生物质和 CuFe2O4 纳米粒子合成的绿色纳米复合材料增强对废水中阳离子/阴离子染料的去除:机理、田口优化和毒性评估

Abdelkader Dabagh, Abdallah Assouani, Fatima Zahra Erraji, Mahmoudy Guellaa, Abdeljalil Ait Ichou, Mohamed EL-Habacha, Fouad Sinan, Mohamed Zerbet
{"title":"用酸改性生物质和 CuFe2O4 纳米粒子合成的绿色纳米复合材料增强对废水中阳离子/阴离子染料的去除:机理、田口优化和毒性评估","authors":"Abdelkader Dabagh,&nbsp;Abdallah Assouani,&nbsp;Fatima Zahra Erraji,&nbsp;Mahmoudy Guellaa,&nbsp;Abdeljalil Ait Ichou,&nbsp;Mohamed EL-Habacha,&nbsp;Fouad Sinan,&nbsp;Mohamed Zerbet","doi":"10.1016/j.enmm.2024.101019","DOIUrl":null,"url":null,"abstract":"<div><div>This article addresses the nanoadsorption mechanisms of rhodamine B (RB), crystal violet (CV), and Congo red (CR) using acid-treated <em>C.edulis</em> (ATCE)/CuFe<sub>2</sub>O<sub>4</sub> (ATCE@CuFe<sub>2</sub>O<sub>4</sub>) from an aqueous solution. The physical and chemical characterizations of nanobiomass were studied using different techniques. The specific surface areas of the ATCE and ATCE@CuFe<sub>2</sub>O<sub>4</sub> composites were 15.88 and 337.81 m<sup>2</sup>/g, respectively, indicating a significant specific surface area of ​​the ATCE@CuFe<sub>2</sub>O<sub>4</sub> nanocomposite. A number of functional groups were determined, which promote the binding of the dye to the adsorbent. The SEM also shows that the adsorbent has a homogeneous texture with deep voids and significant porosity, which likely explains the retention and binding of dye ions on the surface of the adsorbent. In fact, the Langmuir isotherm with a correlation coefficient of 99 % for CV, RB and CR, respectively, represents the most suitable model to explain the adsorption mechanism. The maximum adsorption amount is 666.6 mg/g for CV, 645.16 mg/g for RB and 434.71 mg/g for CR at 308 °K. The adsorption kinetic processes were predicted by the pseudo-second order kinetic model. The thermodynamic properties showed that the adsorption on ATCE@CuFe<sub>2</sub>O<sub>4</sub> was possible and spontaneous. The ATCE@CuFe<sub>2</sub>O<sub>4</sub> recycling and elimination CV, RB, and CR were 74.23 %, 72.75 %, and 67.84 %, respectively, after seven cycles. The design, modeling and optimization of the adsorption parameters were carried out using the Taguchi experimental design. The maximum removal efficiency of CV, RB and CR dyes in optimal operating conditions were 99.96, 98.29 and 97.76 %, respectively. Which at the optimal conditions of 1 g/L, 90 min, 20 mg/L, 298 <sup>°</sup>K, pH 10 for CV and RB dyes and 1 g/L, 90 min, 20 mg/L, 308 <sup>°</sup>K, pH 4 for CR. This research demonstrated the performance of ATCE@CuFe<sub>2</sub>O<sub>4</sub> in bean seed germination test and its effectiveness in removing dyes from wastewater.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced cationic/anionic dyes removal in wastewater by green nanocomposites synthesized from acid-modified biomass and CuFe2O4 nanoparticles: Mechanism, Taguchi optimization and toxicity evaluation\",\"authors\":\"Abdelkader Dabagh,&nbsp;Abdallah Assouani,&nbsp;Fatima Zahra Erraji,&nbsp;Mahmoudy Guellaa,&nbsp;Abdeljalil Ait Ichou,&nbsp;Mohamed EL-Habacha,&nbsp;Fouad Sinan,&nbsp;Mohamed Zerbet\",\"doi\":\"10.1016/j.enmm.2024.101019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article addresses the nanoadsorption mechanisms of rhodamine B (RB), crystal violet (CV), and Congo red (CR) using acid-treated <em>C.edulis</em> (ATCE)/CuFe<sub>2</sub>O<sub>4</sub> (ATCE@CuFe<sub>2</sub>O<sub>4</sub>) from an aqueous solution. The physical and chemical characterizations of nanobiomass were studied using different techniques. The specific surface areas of the ATCE and ATCE@CuFe<sub>2</sub>O<sub>4</sub> composites were 15.88 and 337.81 m<sup>2</sup>/g, respectively, indicating a significant specific surface area of ​​the ATCE@CuFe<sub>2</sub>O<sub>4</sub> nanocomposite. A number of functional groups were determined, which promote the binding of the dye to the adsorbent. The SEM also shows that the adsorbent has a homogeneous texture with deep voids and significant porosity, which likely explains the retention and binding of dye ions on the surface of the adsorbent. In fact, the Langmuir isotherm with a correlation coefficient of 99 % for CV, RB and CR, respectively, represents the most suitable model to explain the adsorption mechanism. The maximum adsorption amount is 666.6 mg/g for CV, 645.16 mg/g for RB and 434.71 mg/g for CR at 308 °K. The adsorption kinetic processes were predicted by the pseudo-second order kinetic model. The thermodynamic properties showed that the adsorption on ATCE@CuFe<sub>2</sub>O<sub>4</sub> was possible and spontaneous. The ATCE@CuFe<sub>2</sub>O<sub>4</sub> recycling and elimination CV, RB, and CR were 74.23 %, 72.75 %, and 67.84 %, respectively, after seven cycles. The design, modeling and optimization of the adsorption parameters were carried out using the Taguchi experimental design. The maximum removal efficiency of CV, RB and CR dyes in optimal operating conditions were 99.96, 98.29 and 97.76 %, respectively. Which at the optimal conditions of 1 g/L, 90 min, 20 mg/L, 298 <sup>°</sup>K, pH 10 for CV and RB dyes and 1 g/L, 90 min, 20 mg/L, 308 <sup>°</sup>K, pH 4 for CR. This research demonstrated the performance of ATCE@CuFe<sub>2</sub>O<sub>4</sub> in bean seed germination test and its effectiveness in removing dyes from wastewater.</div></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153224001077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224001077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了利用酸处理过的C.edulis(ATCE)/CuFe2O4(ATCE@CuFe2O4)从水溶液中纳米吸附罗丹明B(RB)、结晶紫(CV)和刚果红(CR)的机理。使用不同的技术对纳米生物质的物理和化学特性进行了研究。ATCE 和 ATCE@CuFe2O4 复合材料的比表面积分别为 15.88 和 337.81 m2/g,表明 ATCE@CuFe2O4 纳米复合材料的比表面积很大。经测定,有一些官能团能促进染料与吸附剂的结合。扫描电子显微镜还显示,吸附剂具有均匀的质地,空隙很深,孔隙率很大,这可能是染料离子在吸附剂表面保留和结合的原因。事实上,CV、RB 和 CR 的朗缪尔等温线(相关系数分别为 99%)是解释吸附机理的最合适模型。在 308 °K 时,CV 的最大吸附量为 666.6 mg/g,RB 为 645.16 mg/g,CR 为 434.71 mg/g。吸附动力学过程由假二阶动力学模型预测。热力学性质表明,ATCE@CuFe2O4 上的吸附是可能的、自发的。七次循环后,ATCE@CuFe2O4 的回收率和消除率 CV、RB 和 CR 分别为 74.23%、72.75% 和 67.84%。采用田口试验设计法对吸附参数进行了设计、建模和优化。在最佳操作条件下,CV、RB 和 CR 染料的最大去除率分别为 99.96%、98.29% 和 97.76%。其中,在 1 克/升、90 分钟、20 毫克/升、298 °K、pH 值为 10 的最佳条件下,CV 和 RB 染料的去除率为 99.96%;在 1 克/升、90 分钟、20 毫克/升、308 °K、pH 值为 4 的最佳条件下,CR 染料的去除率为 97.76%。这项研究证明了 ATCE@CuFe2O4 在豆类种子发芽试验中的性能及其去除废水中染料的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced cationic/anionic dyes removal in wastewater by green nanocomposites synthesized from acid-modified biomass and CuFe2O4 nanoparticles: Mechanism, Taguchi optimization and toxicity evaluation
This article addresses the nanoadsorption mechanisms of rhodamine B (RB), crystal violet (CV), and Congo red (CR) using acid-treated C.edulis (ATCE)/CuFe2O4 (ATCE@CuFe2O4) from an aqueous solution. The physical and chemical characterizations of nanobiomass were studied using different techniques. The specific surface areas of the ATCE and ATCE@CuFe2O4 composites were 15.88 and 337.81 m2/g, respectively, indicating a significant specific surface area of ​​the ATCE@CuFe2O4 nanocomposite. A number of functional groups were determined, which promote the binding of the dye to the adsorbent. The SEM also shows that the adsorbent has a homogeneous texture with deep voids and significant porosity, which likely explains the retention and binding of dye ions on the surface of the adsorbent. In fact, the Langmuir isotherm with a correlation coefficient of 99 % for CV, RB and CR, respectively, represents the most suitable model to explain the adsorption mechanism. The maximum adsorption amount is 666.6 mg/g for CV, 645.16 mg/g for RB and 434.71 mg/g for CR at 308 °K. The adsorption kinetic processes were predicted by the pseudo-second order kinetic model. The thermodynamic properties showed that the adsorption on ATCE@CuFe2O4 was possible and spontaneous. The ATCE@CuFe2O4 recycling and elimination CV, RB, and CR were 74.23 %, 72.75 %, and 67.84 %, respectively, after seven cycles. The design, modeling and optimization of the adsorption parameters were carried out using the Taguchi experimental design. The maximum removal efficiency of CV, RB and CR dyes in optimal operating conditions were 99.96, 98.29 and 97.76 %, respectively. Which at the optimal conditions of 1 g/L, 90 min, 20 mg/L, 298 °K, pH 10 for CV and RB dyes and 1 g/L, 90 min, 20 mg/L, 308 °K, pH 4 for CR. This research demonstrated the performance of ATCE@CuFe2O4 in bean seed germination test and its effectiveness in removing dyes from wastewater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
期刊最新文献
Enhanced cationic/anionic dyes removal in wastewater by green nanocomposites synthesized from acid-modified biomass and CuFe2O4 nanoparticles: Mechanism, Taguchi optimization and toxicity evaluation Adsorption of tetracycline from an aqueous solution on a CaMgAl-layer double hydroxide/red mud composite: Kinetic, isotherm, and thermodynamic studies Competent CuS QDs@Fe MIL101 heterojunction for Sunlight-driven degradation of pharmaceutical contaminants from wastewater Disinfection of synthetic human urine by mixed metal oxide anode through photo/electrochemical oxidation Fabrication of CNC-AC bionanosorbents from the residual mass of Magnolia champaca l. Bark after methanol extraction for wastewater treatment: Continuous column adsorption study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1