获取和重建隔热陶瓷的散射特性

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Heat and Mass Transfer Pub Date : 2024-11-04 DOI:10.1016/j.ijheatmasstransfer.2024.126362
Yu Shi, Xin-Lin Xia, Chuang Sun, Xue Chen
{"title":"获取和重建隔热陶瓷的散射特性","authors":"Yu Shi,&nbsp;Xin-Lin Xia,&nbsp;Chuang Sun,&nbsp;Xue Chen","doi":"10.1016/j.ijheatmasstransfer.2024.126362","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately obtaining the radiation properties of insulating ceramic materials is essential for engineering applications. This article obtained the bidirectional transmittance and reflectance of thermal insulation ceramics, and introduced a new scattering phase function to establish a radiation transfer model based on Monte Carlo method. Combined with parallel genetic algorithm inversion, radiation properties such as extinction coefficient, scattering albedo, and scattering phase function are obtained. Firstly, the experimental optical path is simulated and analyzed, which has little effect on the measurement results due to slight deflection of strong extinction material samples and detectors. For the measurement of bidirectional transmittance, a larger spot radius and detector radius will increase the measurement bidirectional transmittance. Secondly, through parallel genetic algorithm inversion, &gt;5 measurement points are required to obtain their radiative properties, however, the radiation properties of backscattering materials cannot be precisely obtained using bidirectional transmittance for inversion. The required inversion accuracy can be achieved when the bidirectional transmittance and reflectance ratio measurement angle step is &lt;4 °. Finally, this study determined the radiation properties of ceramic insulating materials that show little wavelength variation, their spectral extinction coefficients are above 9000m<sup>−1</sup>, and spectral scattering albedo are greater than 0.9. It is difficult to characterize scattering features using isotropic scattering phase functions because materials have both forward and backward scattering characteristics. The scattering characteristics of insulation ceramics described using the newly proposed scattering phase function have higher accuracy.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"236 ","pages":"Article 126362"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acquisition and reconstruction of scattering characteristics of thermal insulation ceramics\",\"authors\":\"Yu Shi,&nbsp;Xin-Lin Xia,&nbsp;Chuang Sun,&nbsp;Xue Chen\",\"doi\":\"10.1016/j.ijheatmasstransfer.2024.126362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurately obtaining the radiation properties of insulating ceramic materials is essential for engineering applications. This article obtained the bidirectional transmittance and reflectance of thermal insulation ceramics, and introduced a new scattering phase function to establish a radiation transfer model based on Monte Carlo method. Combined with parallel genetic algorithm inversion, radiation properties such as extinction coefficient, scattering albedo, and scattering phase function are obtained. Firstly, the experimental optical path is simulated and analyzed, which has little effect on the measurement results due to slight deflection of strong extinction material samples and detectors. For the measurement of bidirectional transmittance, a larger spot radius and detector radius will increase the measurement bidirectional transmittance. Secondly, through parallel genetic algorithm inversion, &gt;5 measurement points are required to obtain their radiative properties, however, the radiation properties of backscattering materials cannot be precisely obtained using bidirectional transmittance for inversion. The required inversion accuracy can be achieved when the bidirectional transmittance and reflectance ratio measurement angle step is &lt;4 °. Finally, this study determined the radiation properties of ceramic insulating materials that show little wavelength variation, their spectral extinction coefficients are above 9000m<sup>−1</sup>, and spectral scattering albedo are greater than 0.9. It is difficult to characterize scattering features using isotropic scattering phase functions because materials have both forward and backward scattering characteristics. The scattering characteristics of insulation ceramics described using the newly proposed scattering phase function have higher accuracy.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"236 \",\"pages\":\"Article 126362\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931024011918\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931024011918","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

准确获取隔热陶瓷材料的辐射特性对工程应用至关重要。本文获得了隔热陶瓷的双向透射率和反射率,并引入了新的散射相位函数,建立了基于蒙特卡罗方法的辐射传递模型。结合并行遗传算法反演,得到了消光系数、散射反照率和散射相位函数等辐射特性。首先对实验光路进行模拟和分析,由于强消光材料样品和探测器的轻微偏转对测量结果影响不大。对于双向透射率的测量,较大的光斑半径和探测器半径会增加测量的双向透射率。其次,通过并行遗传算法反演,>需要 5 个测量点才能获得其辐射特性,但使用双向透射率进行反演无法精确获得背散射材料的辐射特性。当双向透射率和反射率比测量角步长为 4°时,可以达到所需的反演精度。最后,本研究确定了波长变化小、光谱消光系数高于 9000m-1、光谱散射反照率大于 0.9 的陶瓷绝缘材料的辐射特性。由于材料同时具有前向和后向散射特性,因此很难使用各向同性散射相位函数来描述散射特征。使用新提出的散射相位函数描述绝缘陶瓷的散射特征具有更高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acquisition and reconstruction of scattering characteristics of thermal insulation ceramics
Accurately obtaining the radiation properties of insulating ceramic materials is essential for engineering applications. This article obtained the bidirectional transmittance and reflectance of thermal insulation ceramics, and introduced a new scattering phase function to establish a radiation transfer model based on Monte Carlo method. Combined with parallel genetic algorithm inversion, radiation properties such as extinction coefficient, scattering albedo, and scattering phase function are obtained. Firstly, the experimental optical path is simulated and analyzed, which has little effect on the measurement results due to slight deflection of strong extinction material samples and detectors. For the measurement of bidirectional transmittance, a larger spot radius and detector radius will increase the measurement bidirectional transmittance. Secondly, through parallel genetic algorithm inversion, >5 measurement points are required to obtain their radiative properties, however, the radiation properties of backscattering materials cannot be precisely obtained using bidirectional transmittance for inversion. The required inversion accuracy can be achieved when the bidirectional transmittance and reflectance ratio measurement angle step is <4 °. Finally, this study determined the radiation properties of ceramic insulating materials that show little wavelength variation, their spectral extinction coefficients are above 9000m−1, and spectral scattering albedo are greater than 0.9. It is difficult to characterize scattering features using isotropic scattering phase functions because materials have both forward and backward scattering characteristics. The scattering characteristics of insulation ceramics described using the newly proposed scattering phase function have higher accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
期刊最新文献
Particle sedimentation in cored-wire-arc directed energy deposition: Particle migration and suppression mechanism via ultrasonic vibration The effects of rolling and heaving on flow boiling heat transfer in a 3 × 3 rod bundle channel in a natural circulation system Reynolds-averaged Navier-Stokes simulations of opposing flow turbulent mixed convection heat transfer in a vertical tube Gas slip flow and heat transfer over a semi-confined cylinder in proximity to a solid wall Ingress wave model with purge-mainstream density ratio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1