基于卷积神经网络的深度学习检测人体外周血中的网状细胞

Keerthy Reghunandanan , V.S. Lakshmi , Rose Raj , Kasi Viswanath , Christeen Davis , Rajesh Chandramohanadas
{"title":"基于卷积神经网络的深度学习检测人体外周血中的网状细胞","authors":"Keerthy Reghunandanan ,&nbsp;V.S. Lakshmi ,&nbsp;Rose Raj ,&nbsp;Kasi Viswanath ,&nbsp;Christeen Davis ,&nbsp;Rajesh Chandramohanadas","doi":"10.1016/j.ibmed.2024.100175","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning approaches are rapidly augmenting, and in some cases, replacing the conventional methods in biomedical data analysis; to reduce time, cost, biases, and the need for sophisticated analytical platforms. Hence, significant interest has been compounded in the integration of automated image analysis for various clinical applications, such as the detection of infected or inflamed wounds, bone fractures or for the purpose of disease diagnosis – such as <em>Plasmodium</em> parasites or circulating tumour cells in blood. Here, we report the development of a Convolutional Neural Network (CNN)-based method on CPU to distinguish and count immature human red blood cells known as reticulocytes from blood smears. Reticulocytes represent a heterogeneous and relatively small percentage of cells in peripheral blood, and contain residual RNA in complex with proteins which generates thread-like patterns when stained with New Methylene Blue (NMB) dye. We used more than 200 NMB-stained images from leukocyte-depleted blood to train and optimize the model for immature reticulocytes (stained positive with NMB, intensity and pattern of which depends on the developmental stage of the reticulocyte) and mature RBCs (no staining with NMB). The training performance evaluation metrics demonstrated a mean average precision (mAP50) of 0.88, a precision of 0.83, a recall of 0.88, and an F1 score of 0.87. Our model was able to successfully count reticulocytes with accuracy more than 90% from unknown samples which were subsequently cross-verified through microscopy and counting. Given the importance of reticulocyte maturation and its clinical relevance, the newly developed model will find important, easy to adopt biomedical applications that can be achieved on a simple PC.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"10 ","pages":"Article 100175"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Convolutional Neural Network- Based Deep Learning To Detect Reticulocytes From Human Peripheral Blood\",\"authors\":\"Keerthy Reghunandanan ,&nbsp;V.S. Lakshmi ,&nbsp;Rose Raj ,&nbsp;Kasi Viswanath ,&nbsp;Christeen Davis ,&nbsp;Rajesh Chandramohanadas\",\"doi\":\"10.1016/j.ibmed.2024.100175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine learning approaches are rapidly augmenting, and in some cases, replacing the conventional methods in biomedical data analysis; to reduce time, cost, biases, and the need for sophisticated analytical platforms. Hence, significant interest has been compounded in the integration of automated image analysis for various clinical applications, such as the detection of infected or inflamed wounds, bone fractures or for the purpose of disease diagnosis – such as <em>Plasmodium</em> parasites or circulating tumour cells in blood. Here, we report the development of a Convolutional Neural Network (CNN)-based method on CPU to distinguish and count immature human red blood cells known as reticulocytes from blood smears. Reticulocytes represent a heterogeneous and relatively small percentage of cells in peripheral blood, and contain residual RNA in complex with proteins which generates thread-like patterns when stained with New Methylene Blue (NMB) dye. We used more than 200 NMB-stained images from leukocyte-depleted blood to train and optimize the model for immature reticulocytes (stained positive with NMB, intensity and pattern of which depends on the developmental stage of the reticulocyte) and mature RBCs (no staining with NMB). The training performance evaluation metrics demonstrated a mean average precision (mAP50) of 0.88, a precision of 0.83, a recall of 0.88, and an F1 score of 0.87. Our model was able to successfully count reticulocytes with accuracy more than 90% from unknown samples which were subsequently cross-verified through microscopy and counting. Given the importance of reticulocyte maturation and its clinical relevance, the newly developed model will find important, easy to adopt biomedical applications that can be achieved on a simple PC.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"10 \",\"pages\":\"Article 100175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521224000425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习方法正在迅速增强,并在某些情况下取代生物医学数据分析的传统方法,以减少时间、成本、偏差和对复杂分析平台的需求。因此,人们更加关注将自动图像分析整合到各种临床应用中,如检测感染或发炎的伤口、骨折,或用于疾病诊断--如疟原虫寄生虫或血液中的循环肿瘤细胞。在此,我们报告了在中央处理器上开发的基于卷积神经网络(CNN)的方法,用于从血液涂片中区分和计数未成熟的人类红细胞(称为网状红细胞)。网织红细胞在外周血细胞中占相对较小的比例,且具有异质性,含有与蛋白质复合的残留 RNA,在新亚甲蓝(NMB)染料染色时会产生线状图案。我们使用了 200 多张来自去白细胞血液的 NMB 染色图像,对未成熟网织红细胞(NMB 染色呈阳性,染色强度和模式取决于网织红细胞的发育阶段)和成熟网织红细胞(NMB 染色不呈阳性)进行了模型训练和优化。训练性能评估指标显示,平均精度(mAP50)为 0.88,精确度为 0.83,召回率为 0.88,F1 得分为 0.87。我们的模型能够成功地对未知样本中的网状细胞进行计数,准确率超过 90%,随后通过显微镜和计数进行交叉验证。鉴于网织红细胞成熟的重要性及其临床相关性,新开发的模型将在生物医学领域找到重要而易于采用的应用,而且只需一台简单的个人电脑即可实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Convolutional Neural Network- Based Deep Learning To Detect Reticulocytes From Human Peripheral Blood
Machine learning approaches are rapidly augmenting, and in some cases, replacing the conventional methods in biomedical data analysis; to reduce time, cost, biases, and the need for sophisticated analytical platforms. Hence, significant interest has been compounded in the integration of automated image analysis for various clinical applications, such as the detection of infected or inflamed wounds, bone fractures or for the purpose of disease diagnosis – such as Plasmodium parasites or circulating tumour cells in blood. Here, we report the development of a Convolutional Neural Network (CNN)-based method on CPU to distinguish and count immature human red blood cells known as reticulocytes from blood smears. Reticulocytes represent a heterogeneous and relatively small percentage of cells in peripheral blood, and contain residual RNA in complex with proteins which generates thread-like patterns when stained with New Methylene Blue (NMB) dye. We used more than 200 NMB-stained images from leukocyte-depleted blood to train and optimize the model for immature reticulocytes (stained positive with NMB, intensity and pattern of which depends on the developmental stage of the reticulocyte) and mature RBCs (no staining with NMB). The training performance evaluation metrics demonstrated a mean average precision (mAP50) of 0.88, a precision of 0.83, a recall of 0.88, and an F1 score of 0.87. Our model was able to successfully count reticulocytes with accuracy more than 90% from unknown samples which were subsequently cross-verified through microscopy and counting. Given the importance of reticulocyte maturation and its clinical relevance, the newly developed model will find important, easy to adopt biomedical applications that can be achieved on a simple PC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1