Ying Li , Ruqian Wu , Tingting Chen , Debin Qin , Xinmin An
{"title":"杨树花芽发育过程中 MIKC 型 MADS-box 家族成员的全基因组综合特征及动态表达谱分析","authors":"Ying Li , Ruqian Wu , Tingting Chen , Debin Qin , Xinmin An","doi":"10.1016/j.indcrop.2024.119968","DOIUrl":null,"url":null,"abstract":"<div><div><em>Poplar</em> is a major silvicultural tree species for industrial production, with versatile applications in construction, furniture, pulp and biofuel. The phenotypic appearance of male or female floral buds in poplar trees, exhibits a strikingly similar morphology at corresponding developmental stages. However, there are significant differences in internal anatomical structures. The MIKC-type MADS-box transcription factor family plays an indispensable role in regulating the development of floral organs and increasing vegetative biomass, and it is also of great significance in elucidation of the aforementioned morphological differences. This study systematically analyzed the MIKC-type MADS-box transcription factor family in <em>Populus tomentosa</em>. A total of 100 MIKC-type MADS-box genes were identified, which were divided into 14 subfamilies. We examined the physicochemical properties, gene structure, conserved motifs, chromosome distribution, collinearity, promoter cis-acting elements, gene expression profiles, and protein-protein interaction network of these 100 MIKC-type MADS-box members. Excitingly, four clusters of <em>PtMADS</em> members exhibited a high level of abundant expression in the initial and mature floral buds of both male and female, suggesting critical significance in tuning the morphogenesis and development of floral organs, as well as in the modulation of reproductive fitness. The protein-protein interaction network diagram corroborated these findings, substantiating the speculated roles of these genes. Our findings lay a foundational framework for future functional explorations and potential applications of MIKC-type MADS-box genes in this industry tree species.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"222 ","pages":"Article 119968"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive genome-wide characterization of the MIKC-type MADS-box family members and the dynamic expression profiling throughout the development of floral buds in Populus tomentosa\",\"authors\":\"Ying Li , Ruqian Wu , Tingting Chen , Debin Qin , Xinmin An\",\"doi\":\"10.1016/j.indcrop.2024.119968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Poplar</em> is a major silvicultural tree species for industrial production, with versatile applications in construction, furniture, pulp and biofuel. The phenotypic appearance of male or female floral buds in poplar trees, exhibits a strikingly similar morphology at corresponding developmental stages. However, there are significant differences in internal anatomical structures. The MIKC-type MADS-box transcription factor family plays an indispensable role in regulating the development of floral organs and increasing vegetative biomass, and it is also of great significance in elucidation of the aforementioned morphological differences. This study systematically analyzed the MIKC-type MADS-box transcription factor family in <em>Populus tomentosa</em>. A total of 100 MIKC-type MADS-box genes were identified, which were divided into 14 subfamilies. We examined the physicochemical properties, gene structure, conserved motifs, chromosome distribution, collinearity, promoter cis-acting elements, gene expression profiles, and protein-protein interaction network of these 100 MIKC-type MADS-box members. Excitingly, four clusters of <em>PtMADS</em> members exhibited a high level of abundant expression in the initial and mature floral buds of both male and female, suggesting critical significance in tuning the morphogenesis and development of floral organs, as well as in the modulation of reproductive fitness. The protein-protein interaction network diagram corroborated these findings, substantiating the speculated roles of these genes. Our findings lay a foundational framework for future functional explorations and potential applications of MIKC-type MADS-box genes in this industry tree species.</div></div>\",\"PeriodicalId\":13581,\"journal\":{\"name\":\"Industrial Crops and Products\",\"volume\":\"222 \",\"pages\":\"Article 119968\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Crops and Products\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926669024019459\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926669024019459","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Comprehensive genome-wide characterization of the MIKC-type MADS-box family members and the dynamic expression profiling throughout the development of floral buds in Populus tomentosa
Poplar is a major silvicultural tree species for industrial production, with versatile applications in construction, furniture, pulp and biofuel. The phenotypic appearance of male or female floral buds in poplar trees, exhibits a strikingly similar morphology at corresponding developmental stages. However, there are significant differences in internal anatomical structures. The MIKC-type MADS-box transcription factor family plays an indispensable role in regulating the development of floral organs and increasing vegetative biomass, and it is also of great significance in elucidation of the aforementioned morphological differences. This study systematically analyzed the MIKC-type MADS-box transcription factor family in Populus tomentosa. A total of 100 MIKC-type MADS-box genes were identified, which were divided into 14 subfamilies. We examined the physicochemical properties, gene structure, conserved motifs, chromosome distribution, collinearity, promoter cis-acting elements, gene expression profiles, and protein-protein interaction network of these 100 MIKC-type MADS-box members. Excitingly, four clusters of PtMADS members exhibited a high level of abundant expression in the initial and mature floral buds of both male and female, suggesting critical significance in tuning the morphogenesis and development of floral organs, as well as in the modulation of reproductive fitness. The protein-protein interaction network diagram corroborated these findings, substantiating the speculated roles of these genes. Our findings lay a foundational framework for future functional explorations and potential applications of MIKC-type MADS-box genes in this industry tree species.
期刊介绍:
Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.