{"title":"具有不同乙醇亚基的聚(反式-1,4-环己烷二甲酸烯丙酯)的合成及其特性","authors":"Giulia Guidotti , Clément Fosse , Michelina Soccio , Massimo Gazzano , Valentina Siracusa , Laurent Delbreilh , Antonella Esposito , Nadia Lotti","doi":"10.1016/j.polymdegradstab.2024.111050","DOIUrl":null,"url":null,"abstract":"<div><div>This work explores one of the numerous playgrounds offered by polyesters. A series of poly (alkylene <em>trans</em>-1,4-cyclohexanedicarboxylate)s were synthesized combining <em>trans</em>-1,4-cyclohexane dicarboxylic acid with four diols containing an increasing number of methylene groups (<span><math><msub><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>CH</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> = 3, 4, 5 and 6). The resulting polyesters are fully aliphatic. Their backbones contain cyclic aliphatic moieties and linear aliphatic segments in different relative contents depending on <span><math><msub><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>CH</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span>. The flexibility of these polyesters can be finely tuned (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> decreases proportionally to the increase in <span><math><msub><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>CH</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span>), however the microstructure dramatically changes depending on whether <span><math><msub><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>CH</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> is an odd or an even number (odd-even effect). On one hand, the odd-numbered samples are easier to melt-quench to a fully amorphous glassy state; on the other hand, the even-numbered samples are prone to crystallization and crystallize very fast. The developed microstructure is complex because of the probable coexistence of different crystalline structures, mesophases, and molecular arrangements depending on the <em>cis</em>/<em>trans</em> isomerism of the cyclohexane moiety. Preliminary tests provided mechanical and barrier properties that could make these polyesters suitable for packaging applications. Composting tests showed that increasing <span><math><msub><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>CH</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> could eventually improve the biodegradation rate of these polyesters, although crystallinity remains the most influencing parameter.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"230 ","pages":"Article 111050"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and properties of poly (alkylene trans-1,4-cyclohexanedicarboxylate)s with different glycolic subunits\",\"authors\":\"Giulia Guidotti , Clément Fosse , Michelina Soccio , Massimo Gazzano , Valentina Siracusa , Laurent Delbreilh , Antonella Esposito , Nadia Lotti\",\"doi\":\"10.1016/j.polymdegradstab.2024.111050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work explores one of the numerous playgrounds offered by polyesters. A series of poly (alkylene <em>trans</em>-1,4-cyclohexanedicarboxylate)s were synthesized combining <em>trans</em>-1,4-cyclohexane dicarboxylic acid with four diols containing an increasing number of methylene groups (<span><math><msub><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>CH</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> = 3, 4, 5 and 6). The resulting polyesters are fully aliphatic. Their backbones contain cyclic aliphatic moieties and linear aliphatic segments in different relative contents depending on <span><math><msub><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>CH</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span>. The flexibility of these polyesters can be finely tuned (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> decreases proportionally to the increase in <span><math><msub><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>CH</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span>), however the microstructure dramatically changes depending on whether <span><math><msub><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>CH</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> is an odd or an even number (odd-even effect). On one hand, the odd-numbered samples are easier to melt-quench to a fully amorphous glassy state; on the other hand, the even-numbered samples are prone to crystallization and crystallize very fast. The developed microstructure is complex because of the probable coexistence of different crystalline structures, mesophases, and molecular arrangements depending on the <em>cis</em>/<em>trans</em> isomerism of the cyclohexane moiety. Preliminary tests provided mechanical and barrier properties that could make these polyesters suitable for packaging applications. Composting tests showed that increasing <span><math><msub><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>CH</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> could eventually improve the biodegradation rate of these polyesters, although crystallinity remains the most influencing parameter.</div></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"230 \",\"pages\":\"Article 111050\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391024003938\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024003938","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Synthesis and properties of poly (alkylene trans-1,4-cyclohexanedicarboxylate)s with different glycolic subunits
This work explores one of the numerous playgrounds offered by polyesters. A series of poly (alkylene trans-1,4-cyclohexanedicarboxylate)s were synthesized combining trans-1,4-cyclohexane dicarboxylic acid with four diols containing an increasing number of methylene groups ( = 3, 4, 5 and 6). The resulting polyesters are fully aliphatic. Their backbones contain cyclic aliphatic moieties and linear aliphatic segments in different relative contents depending on . The flexibility of these polyesters can be finely tuned ( decreases proportionally to the increase in ), however the microstructure dramatically changes depending on whether is an odd or an even number (odd-even effect). On one hand, the odd-numbered samples are easier to melt-quench to a fully amorphous glassy state; on the other hand, the even-numbered samples are prone to crystallization and crystallize very fast. The developed microstructure is complex because of the probable coexistence of different crystalline structures, mesophases, and molecular arrangements depending on the cis/trans isomerism of the cyclohexane moiety. Preliminary tests provided mechanical and barrier properties that could make these polyesters suitable for packaging applications. Composting tests showed that increasing could eventually improve the biodegradation rate of these polyesters, although crystallinity remains the most influencing parameter.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.