适用于高度移动环境的基于软件无线电的 IEEE 802.15.4 SUN FSK 评估平台

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Vehicular Technology Pub Date : 2024-09-18 DOI:10.1109/OJVT.2024.3464349
Jaeseok Lim;Keito Nakura;Shota Mori;Hiroshi Harada
{"title":"适用于高度移动环境的基于软件无线电的 IEEE 802.15.4 SUN FSK 评估平台","authors":"Jaeseok Lim;Keito Nakura;Shota Mori;Hiroshi Harada","doi":"10.1109/OJVT.2024.3464349","DOIUrl":null,"url":null,"abstract":"IEEE 802.15.4 smart utility network (SUN) frequency-shift keying (FSK) has attracted considerable attention as a wireless communication standard designed for use in essential applications required by Internet of Things (IoT) systems. However, longer transmission distances in highly mobile environments are required to support various applications in next-generation IoT systems, such as vehicle-to-everything, automated driving, and drone control systems. Although research on wide-area, highly mobile communications has been conducted via computer simulations, an experimental evaluation platform for further research has not been developed. In this study, we developed an experimental evaluation platform for SUN FSK in very high frequency bands. The developed platform comprises a signal generator-based transmitter and a software-defined radio-based receiver. It was proven to be capable of transmitting a power of ≥5 W through a power amplifier and was suitable for laboratory and field experiments. In addition, we developed received signal processing methods, including a packet detection method and a channel estimation method, which were designed to achieve wide-area, highly mobile communication. In laboratory experiments, the packet error rate characteristics required by IEEE 802.15.4 were achieved even at a transmission distance of >10 km at vehicular speeds of several tens of km/h.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684162","citationCount":"0","resultStr":"{\"title\":\"Software-Defined Radio-Based IEEE 802.15.4 SUN FSK Evaluation Platform for Highly Mobile Environments\",\"authors\":\"Jaeseok Lim;Keito Nakura;Shota Mori;Hiroshi Harada\",\"doi\":\"10.1109/OJVT.2024.3464349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IEEE 802.15.4 smart utility network (SUN) frequency-shift keying (FSK) has attracted considerable attention as a wireless communication standard designed for use in essential applications required by Internet of Things (IoT) systems. However, longer transmission distances in highly mobile environments are required to support various applications in next-generation IoT systems, such as vehicle-to-everything, automated driving, and drone control systems. Although research on wide-area, highly mobile communications has been conducted via computer simulations, an experimental evaluation platform for further research has not been developed. In this study, we developed an experimental evaluation platform for SUN FSK in very high frequency bands. The developed platform comprises a signal generator-based transmitter and a software-defined radio-based receiver. It was proven to be capable of transmitting a power of ≥5 W through a power amplifier and was suitable for laboratory and field experiments. In addition, we developed received signal processing methods, including a packet detection method and a channel estimation method, which were designed to achieve wide-area, highly mobile communication. In laboratory experiments, the packet error rate characteristics required by IEEE 802.15.4 were achieved even at a transmission distance of >10 km at vehicular speeds of several tens of km/h.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684162\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684162/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10684162/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

IEEE 802.15.4 智能公用事业网络(SUN)频移键控(FSK)作为物联网(IoT)系统所需的基本应用而设计的无线通信标准引起了广泛关注。然而,要支持下一代物联网系统中的各种应用,如车对物、自动驾驶和无人机控制系统,就需要在高度移动的环境中实现更远的传输距离。虽然有关广域高移动通信的研究已通过计算机模拟进行,但用于进一步研究的实验评估平台尚未开发出来。在本研究中,我们开发了一个用于超高频段 SUN FSK 的实验评估平台。开发的平台包括一个基于信号发生器的发射器和一个基于软件定义无线电的接收器。实验证明,该平台能够通过功率放大器发射功率≥5 W 的信号,适用于实验室和现场实验。此外,我们还开发了接收信号处理方法,包括数据包检测方法和信道估计方法,旨在实现广域高移动通信。在实验室实验中,即使在传输距离大于 10 千米、车速为几十千米/小时的情况下,也能达到 IEEE 802.15.4 所要求的数据包错误率特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Software-Defined Radio-Based IEEE 802.15.4 SUN FSK Evaluation Platform for Highly Mobile Environments
IEEE 802.15.4 smart utility network (SUN) frequency-shift keying (FSK) has attracted considerable attention as a wireless communication standard designed for use in essential applications required by Internet of Things (IoT) systems. However, longer transmission distances in highly mobile environments are required to support various applications in next-generation IoT systems, such as vehicle-to-everything, automated driving, and drone control systems. Although research on wide-area, highly mobile communications has been conducted via computer simulations, an experimental evaluation platform for further research has not been developed. In this study, we developed an experimental evaluation platform for SUN FSK in very high frequency bands. The developed platform comprises a signal generator-based transmitter and a software-defined radio-based receiver. It was proven to be capable of transmitting a power of ≥5 W through a power amplifier and was suitable for laboratory and field experiments. In addition, we developed received signal processing methods, including a packet detection method and a channel estimation method, which were designed to achieve wide-area, highly mobile communication. In laboratory experiments, the packet error rate characteristics required by IEEE 802.15.4 were achieved even at a transmission distance of >10 km at vehicular speeds of several tens of km/h.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
期刊最新文献
Digital Twin-Empowered Green Mobility Management in Next-Gen Transportation Networks Fairness-Aware Utility Maximization for Multi-UAV-Aided Terrestrial Networks LiFi for Industry 4.0: Main Features, Implementation and Initial Testing of IEEE Std 802.15.13 Partial Learning-Based Iterative Detection of MIMO Systems Decentralized and Asymmetric Multi-Agent Learning in Construction Sites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1