涡轮叶片隔热涂层在钙镁铝硅酸盐腐蚀和热冲击下的失效预测

IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL Acta Mechanica Sinica Pub Date : 2024-10-29 DOI:10.1007/s10409-024-24285-x
Zhiyuan Liu  (, ), Yiqi Xiao  (, ), Li Yang  (, ), Wei Liu  (, ), Gang Yan  (, ), Yu Sun  (, ), Yichun Zhou  (, )
{"title":"涡轮叶片隔热涂层在钙镁铝硅酸盐腐蚀和热冲击下的失效预测","authors":"Zhiyuan Liu \n (,&nbsp;),&nbsp;Yiqi Xiao \n (,&nbsp;),&nbsp;Li Yang \n (,&nbsp;),&nbsp;Wei Liu \n (,&nbsp;),&nbsp;Gang Yan \n (,&nbsp;),&nbsp;Yu Sun \n (,&nbsp;),&nbsp;Yichun Zhou \n (,&nbsp;)","doi":"10.1007/s10409-024-24285-x","DOIUrl":null,"url":null,"abstract":"<div><p>Failure of thermal barrier coatings (TBCs) can reduce the safety of aero-engines. Predicting the lifetime of TBCs on turbine blades under real service conditions is challenging due to the complex multiscale computation required and the chemo-thermo-mechanically coupled mechanisms involved. This paper proposes a multiscale deep-learning method for TBC failure prediction under typical thermal shock conditions involving calcium-magnesium-alumina-silicate (CMAS) corrosion. A micro-scale model is used to describe local stress and damage with consideration of the TBC microstructure and CMAS infiltration and corrosion mechanisms. A deep learning network is developed to reveal the effect of microscale corrosion on TBC lifetime. The modeled spalling mechanism and area are consistent with the experimental results, with the predicted lifetime being within 20% of that observed. This work provides an effective method for predicting the lifetime of TBCs under real service conditions.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failure prediction of thermal barrier coatings on turbine blades under calcium-magnesium-alumina-silicate corrosion and thermal shock\",\"authors\":\"Zhiyuan Liu \\n (,&nbsp;),&nbsp;Yiqi Xiao \\n (,&nbsp;),&nbsp;Li Yang \\n (,&nbsp;),&nbsp;Wei Liu \\n (,&nbsp;),&nbsp;Gang Yan \\n (,&nbsp;),&nbsp;Yu Sun \\n (,&nbsp;),&nbsp;Yichun Zhou \\n (,&nbsp;)\",\"doi\":\"10.1007/s10409-024-24285-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Failure of thermal barrier coatings (TBCs) can reduce the safety of aero-engines. Predicting the lifetime of TBCs on turbine blades under real service conditions is challenging due to the complex multiscale computation required and the chemo-thermo-mechanically coupled mechanisms involved. This paper proposes a multiscale deep-learning method for TBC failure prediction under typical thermal shock conditions involving calcium-magnesium-alumina-silicate (CMAS) corrosion. A micro-scale model is used to describe local stress and damage with consideration of the TBC microstructure and CMAS infiltration and corrosion mechanisms. A deep learning network is developed to reveal the effect of microscale corrosion on TBC lifetime. The modeled spalling mechanism and area are consistent with the experimental results, with the predicted lifetime being within 20% of that observed. This work provides an effective method for predicting the lifetime of TBCs under real service conditions.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 5\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24285-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24285-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

隔热涂层(TBC)的失效会降低航空发动机的安全性。由于需要进行复杂的多尺度计算,且涉及化学热力学耦合机制,因此预测涡轮叶片上的热障涂层在实际使用条件下的使用寿命具有挑战性。本文提出了一种多尺度深度学习方法,用于预测典型热冲击条件下涉及钙镁铝硅酸盐(CMAS)腐蚀的 TBC 失效。微尺度模型用于描述局部应力和损伤,同时考虑到 TBC 的微观结构以及 CMAS 的渗透和腐蚀机制。开发了一个深度学习网络,以揭示微尺度腐蚀对 TBC 寿命的影响。建模的剥落机理和面积与实验结果一致,预测的寿命在观测结果的 20% 以内。这项工作为预测 TBC 在实际使用条件下的寿命提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Failure prediction of thermal barrier coatings on turbine blades under calcium-magnesium-alumina-silicate corrosion and thermal shock

Failure of thermal barrier coatings (TBCs) can reduce the safety of aero-engines. Predicting the lifetime of TBCs on turbine blades under real service conditions is challenging due to the complex multiscale computation required and the chemo-thermo-mechanically coupled mechanisms involved. This paper proposes a multiscale deep-learning method for TBC failure prediction under typical thermal shock conditions involving calcium-magnesium-alumina-silicate (CMAS) corrosion. A micro-scale model is used to describe local stress and damage with consideration of the TBC microstructure and CMAS infiltration and corrosion mechanisms. A deep learning network is developed to reveal the effect of microscale corrosion on TBC lifetime. The modeled spalling mechanism and area are consistent with the experimental results, with the predicted lifetime being within 20% of that observed. This work provides an effective method for predicting the lifetime of TBCs under real service conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Sinica
Acta Mechanica Sinica 物理-工程:机械
CiteScore
5.60
自引率
20.00%
发文量
1807
审稿时长
4 months
期刊介绍: Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences. Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences. In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest. Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics
期刊最新文献
Gravity-driven vertical water tunnel for modeling ventilated cavity flows around axisymmetric slender body under streamwise gravitational effect Self-propulsion of a deformable ellipse with the controllable rotation through inviscid fluids Thermal buckling, vibration and transient response of rotating GNPs-reinforced porous microbeams in thermal environment Efficient uncertainty computation method for solving mechanical dynamic systems with a large-scale of interval parameters Highly stretchable radar absorber based on kirigami metastructures with tunable electromagnetic properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1