Aleksandra Ivanova, Olena Mokshyna, Pavel Polishchuk
{"title":"StreaMD:高通量分子动力学模拟工具包","authors":"Aleksandra Ivanova, Olena Mokshyna, Pavel Polishchuk","doi":"10.1186/s13321-024-00918-w","DOIUrl":null,"url":null,"abstract":"<div><p>Molecular dynamics simulations serve as a prevalent approach for investigating the dynamic behaviour of proteins and protein–ligand complexes. Due to its versatility and speed, GROMACS stands out as a commonly utilized software platform for executing molecular dynamics simulations. However, its effective utilization requires substantial expertise in configuring, executing, and interpreting molecular dynamics trajectories. Existing automation tools are constrained in their capability to conduct simulations for large sets of compounds with minimal user intervention, or in their ability to distribute simulations across multiple servers. To address these challenges, we developed a Python-based tool that streamlines all phases of molecular dynamics simulations, encompassing preparation, execution, and analysis. This tool minimizes the required knowledge for users engaging in molecular dynamics simulations and can efficiently operate across multiple servers within a network or a cluster. Notably, the tool not only automates trajectory simulation but also facilitates the computation of free binding energies for protein–ligand complexes and generates interaction fingerprints across the trajectory. Our study demonstrated the applicability of this tool on several benchmark datasets. Additionally, we provided recommendations for end-users to effectively utilize the tool.</p><p><b>Scientific contribution</b></p><p>The developed tool, StreaMD, is applicable to different systems (proteins, ligands and their complexes including co-factors) and requires a little user knowledge to setup and run molecular dynamics simulations. Other features of StreaMD are seamless integration with calculation of MM-GBSA/PBSA binding free energies and protein-ligand interaction fingerprints, and running of simulations within distributed environments. All these will facilitate routine and massive molecular dynamics simulations.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00918-w","citationCount":"0","resultStr":"{\"title\":\"StreaMD: the toolkit for high-throughput molecular dynamics simulations\",\"authors\":\"Aleksandra Ivanova, Olena Mokshyna, Pavel Polishchuk\",\"doi\":\"10.1186/s13321-024-00918-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Molecular dynamics simulations serve as a prevalent approach for investigating the dynamic behaviour of proteins and protein–ligand complexes. Due to its versatility and speed, GROMACS stands out as a commonly utilized software platform for executing molecular dynamics simulations. However, its effective utilization requires substantial expertise in configuring, executing, and interpreting molecular dynamics trajectories. Existing automation tools are constrained in their capability to conduct simulations for large sets of compounds with minimal user intervention, or in their ability to distribute simulations across multiple servers. To address these challenges, we developed a Python-based tool that streamlines all phases of molecular dynamics simulations, encompassing preparation, execution, and analysis. This tool minimizes the required knowledge for users engaging in molecular dynamics simulations and can efficiently operate across multiple servers within a network or a cluster. Notably, the tool not only automates trajectory simulation but also facilitates the computation of free binding energies for protein–ligand complexes and generates interaction fingerprints across the trajectory. Our study demonstrated the applicability of this tool on several benchmark datasets. Additionally, we provided recommendations for end-users to effectively utilize the tool.</p><p><b>Scientific contribution</b></p><p>The developed tool, StreaMD, is applicable to different systems (proteins, ligands and their complexes including co-factors) and requires a little user knowledge to setup and run molecular dynamics simulations. Other features of StreaMD are seamless integration with calculation of MM-GBSA/PBSA binding free energies and protein-ligand interaction fingerprints, and running of simulations within distributed environments. All these will facilitate routine and massive molecular dynamics simulations.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00918-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00918-w\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00918-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
StreaMD: the toolkit for high-throughput molecular dynamics simulations
Molecular dynamics simulations serve as a prevalent approach for investigating the dynamic behaviour of proteins and protein–ligand complexes. Due to its versatility and speed, GROMACS stands out as a commonly utilized software platform for executing molecular dynamics simulations. However, its effective utilization requires substantial expertise in configuring, executing, and interpreting molecular dynamics trajectories. Existing automation tools are constrained in their capability to conduct simulations for large sets of compounds with minimal user intervention, or in their ability to distribute simulations across multiple servers. To address these challenges, we developed a Python-based tool that streamlines all phases of molecular dynamics simulations, encompassing preparation, execution, and analysis. This tool minimizes the required knowledge for users engaging in molecular dynamics simulations and can efficiently operate across multiple servers within a network or a cluster. Notably, the tool not only automates trajectory simulation but also facilitates the computation of free binding energies for protein–ligand complexes and generates interaction fingerprints across the trajectory. Our study demonstrated the applicability of this tool on several benchmark datasets. Additionally, we provided recommendations for end-users to effectively utilize the tool.
Scientific contribution
The developed tool, StreaMD, is applicable to different systems (proteins, ligands and their complexes including co-factors) and requires a little user knowledge to setup and run molecular dynamics simulations. Other features of StreaMD are seamless integration with calculation of MM-GBSA/PBSA binding free energies and protein-ligand interaction fingerprints, and running of simulations within distributed environments. All these will facilitate routine and massive molecular dynamics simulations.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.