通过稳健的 d-d 轨道调制优化钠离子吸附,实现高效电容式去离子

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-05 DOI:10.1002/adfm.202416963
Muran Yu, Daqing Li, Guozhe Sui, Dongxuan Guo, Dawei Chu, Yue Li, Dong-Feng Chai, Jinlong Li
{"title":"通过稳健的 d-d 轨道调制优化钠离子吸附,实现高效电容式去离子","authors":"Muran Yu, Daqing Li, Guozhe Sui, Dongxuan Guo, Dawei Chu, Yue Li, Dong-Feng Chai, Jinlong Li","doi":"10.1002/adfm.202416963","DOIUrl":null,"url":null,"abstract":"Unraveling the fundamental mechanisms of sodium ion adsorption behavior is crucial for guiding the design of electrode materials and enhancing the performance of capacitive deionization systems. Herein, the optimization of sodium ion adsorption is systematically investigated through the robust d–d orbital interactions within zinc-doped iron carbide, facilitated by a novel liquid nitrogen quenching treatment. Liquid nitrogen quenching treatment can enhance the coordination number, strengthen d–d orbital interactions, promote electron transfer, and shift the d-band center of Fe closer to the Fermi level, thereby enhancing sodium ions adsorption energy. Consequently, the obtained electrode material achieves a superior gravimetric adsorption capacity of 121.1 mg g<sup>−1</sup> and attractive cyclic durability. The adsorption capacity is highly competitive compared to the vast majority of related research works in the field of capacitive deionization. Furthermore, sodium ion adsorption/desorption mechanisms are substantiated through ex situ techniques, revealing dynamic atomic and electronic structure evolutions under operational conditions. This work demonstrates that optimizing sodium ion adsorption via robust d–d orbital modulation enabled by liquid nitrogen quenching treatment is an effective approach for developing efficient capacitive deionization electrode materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Sodium Ion Adsorption Through Robust d–d Orbital Modulation for Efficient Capacitive Deionization\",\"authors\":\"Muran Yu, Daqing Li, Guozhe Sui, Dongxuan Guo, Dawei Chu, Yue Li, Dong-Feng Chai, Jinlong Li\",\"doi\":\"10.1002/adfm.202416963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unraveling the fundamental mechanisms of sodium ion adsorption behavior is crucial for guiding the design of electrode materials and enhancing the performance of capacitive deionization systems. Herein, the optimization of sodium ion adsorption is systematically investigated through the robust d–d orbital interactions within zinc-doped iron carbide, facilitated by a novel liquid nitrogen quenching treatment. Liquid nitrogen quenching treatment can enhance the coordination number, strengthen d–d orbital interactions, promote electron transfer, and shift the d-band center of Fe closer to the Fermi level, thereby enhancing sodium ions adsorption energy. Consequently, the obtained electrode material achieves a superior gravimetric adsorption capacity of 121.1 mg g<sup>−1</sup> and attractive cyclic durability. The adsorption capacity is highly competitive compared to the vast majority of related research works in the field of capacitive deionization. Furthermore, sodium ion adsorption/desorption mechanisms are substantiated through ex situ techniques, revealing dynamic atomic and electronic structure evolutions under operational conditions. This work demonstrates that optimizing sodium ion adsorption via robust d–d orbital modulation enabled by liquid nitrogen quenching treatment is an effective approach for developing efficient capacitive deionization electrode materials.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202416963\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202416963","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

揭示钠离子吸附行为的基本机制对于指导电极材料的设计和提高电容式去离子系统的性能至关重要。本文通过新型液氮淬火处理方法,利用掺锌碳化铁中稳健的 d-d 轨道相互作用,系统地研究了钠离子吸附的优化问题。液氮淬火处理可提高配位数,加强 d-d 轨道相互作用,促进电子转移,并使铁的 d 带中心更接近费米级,从而提高钠离子吸附能。因此,所获得的电极材料具有 121.1 mg g-1 的超强重量吸附容量和极好的循环耐久性。与电容式去离子领域的绝大多数相关研究相比,该吸附容量极具竞争力。此外,钠离子的吸附/解吸机理通过原位技术得到了证实,揭示了运行条件下的动态原子和电子结构演变。这项工作表明,通过液氮淬火处理实现的稳健 d-d 轨道调制来优化钠离子吸附是开发高效电容式去离子电极材料的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Sodium Ion Adsorption Through Robust d–d Orbital Modulation for Efficient Capacitive Deionization
Unraveling the fundamental mechanisms of sodium ion adsorption behavior is crucial for guiding the design of electrode materials and enhancing the performance of capacitive deionization systems. Herein, the optimization of sodium ion adsorption is systematically investigated through the robust d–d orbital interactions within zinc-doped iron carbide, facilitated by a novel liquid nitrogen quenching treatment. Liquid nitrogen quenching treatment can enhance the coordination number, strengthen d–d orbital interactions, promote electron transfer, and shift the d-band center of Fe closer to the Fermi level, thereby enhancing sodium ions adsorption energy. Consequently, the obtained electrode material achieves a superior gravimetric adsorption capacity of 121.1 mg g−1 and attractive cyclic durability. The adsorption capacity is highly competitive compared to the vast majority of related research works in the field of capacitive deionization. Furthermore, sodium ion adsorption/desorption mechanisms are substantiated through ex situ techniques, revealing dynamic atomic and electronic structure evolutions under operational conditions. This work demonstrates that optimizing sodium ion adsorption via robust d–d orbital modulation enabled by liquid nitrogen quenching treatment is an effective approach for developing efficient capacitive deionization electrode materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
High-Entropy Strategy Flattening Lithium Ion Migration Energy Landscape to Enhance the Conductivity of Garnet-Type Solid-State Electrolytes Design Rules for 3D Printing-Assisted Pressure Sensor Manufacturing: Achieving Broad Pressure Range Linearity Fibrous Pb(II)-Based Coordination Polymer Operable as a Photocatalyst and Electrocatalyst for High-Rate, Selective CO2-to-Formate Conversion The Reduced Barrier for the Photogenerated Charge Migration on Covalent Triazine-Based Frameworks for Boosting Photocatalytic CO2 Reduction Into Syngas Picosecond Operation of Optoelectronic Hybrid Phase Change Memory Based on Si-Doped Sb Films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1