利用机器学习进行全球闪电干旱预测

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2024-11-04 DOI:10.1029/2024GL111134
Lei Xu, Xihao Zhang, Tingtao Wu, Hongchu Yu, Wenying Du, Chong Zhang, Nengcheng Chen
{"title":"利用机器学习进行全球闪电干旱预测","authors":"Lei Xu,&nbsp;Xihao Zhang,&nbsp;Tingtao Wu,&nbsp;Hongchu Yu,&nbsp;Wenying Du,&nbsp;Chong Zhang,&nbsp;Nengcheng Chen","doi":"10.1029/2024GL111134","DOIUrl":null,"url":null,"abstract":"<p>Flash droughts are rapidly developing extreme weather events with sudden onset and quick intensification. Global prediction of flash droughts at sub-seasonal time scales remains a great challenge. Current state-of-the-art dynamic models subject to large errors and demonstrate low skills in global flash drought prediction. Here, we develop a machine learning-based framework that uses meteorological forecasts as inputs to predict global root-zone soil moisture and flash droughts from 1 day to 2 week lead times. The results indicate that 33% and 24% global flash drought onset and termination events can be correctly predicted by machine learning at 7 day lead time, versus 19% and 11% fractions by state-of-the-art dynamic model. The developed machine learning model demonstrates substantial improvements over dynamic model in global soil moisture prediction, and thus enhances global flash drought forecasting skills in space and time. The presented framework may benefit global flash drought prediction and early warning at sub-seasonal scales.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 21","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111134","citationCount":"0","resultStr":"{\"title\":\"Global Prediction of Flash Drought Using Machine Learning\",\"authors\":\"Lei Xu,&nbsp;Xihao Zhang,&nbsp;Tingtao Wu,&nbsp;Hongchu Yu,&nbsp;Wenying Du,&nbsp;Chong Zhang,&nbsp;Nengcheng Chen\",\"doi\":\"10.1029/2024GL111134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flash droughts are rapidly developing extreme weather events with sudden onset and quick intensification. Global prediction of flash droughts at sub-seasonal time scales remains a great challenge. Current state-of-the-art dynamic models subject to large errors and demonstrate low skills in global flash drought prediction. Here, we develop a machine learning-based framework that uses meteorological forecasts as inputs to predict global root-zone soil moisture and flash droughts from 1 day to 2 week lead times. The results indicate that 33% and 24% global flash drought onset and termination events can be correctly predicted by machine learning at 7 day lead time, versus 19% and 11% fractions by state-of-the-art dynamic model. The developed machine learning model demonstrates substantial improvements over dynamic model in global soil moisture prediction, and thus enhances global flash drought forecasting skills in space and time. The presented framework may benefit global flash drought prediction and early warning at sub-seasonal scales.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"51 21\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111134\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111134\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111134","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

山洪暴发是一种迅速发展的极端天气现象,具有突发性和快速加剧的特点。在亚季节时间尺度上对全球闪旱进行预测仍然是一项巨大挑战。目前最先进的动态模型存在较大误差,在全球山洪灾害预测方面的技能较低。在此,我们开发了一个基于机器学习的框架,该框架以气象预报为输入,预测全球根区土壤水分和 1 天至 2 周提前期的山洪灾害。结果表明,在 7 天准备时间内,机器学习可以正确预测 33% 和 24% 的全球山洪灾害开始和结束事件,而最先进的动态模型只能预测 19% 和 11% 的事件。在全球土壤水分预测方面,所开发的机器学习模型比动态模型有很大改进,从而在空间和时间上提高了全球山洪灾害的预测能力。所提出的框架可能有利于亚季节尺度的全球山洪干旱预测和预警。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Global Prediction of Flash Drought Using Machine Learning

Flash droughts are rapidly developing extreme weather events with sudden onset and quick intensification. Global prediction of flash droughts at sub-seasonal time scales remains a great challenge. Current state-of-the-art dynamic models subject to large errors and demonstrate low skills in global flash drought prediction. Here, we develop a machine learning-based framework that uses meteorological forecasts as inputs to predict global root-zone soil moisture and flash droughts from 1 day to 2 week lead times. The results indicate that 33% and 24% global flash drought onset and termination events can be correctly predicted by machine learning at 7 day lead time, versus 19% and 11% fractions by state-of-the-art dynamic model. The developed machine learning model demonstrates substantial improvements over dynamic model in global soil moisture prediction, and thus enhances global flash drought forecasting skills in space and time. The presented framework may benefit global flash drought prediction and early warning at sub-seasonal scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments With Global AI-Based Weather Models Light Limitation of Poleward Coral Reef Expansion During Past Warm Climates A Factor Two Difference in 21st-Century Greenland Ice Sheet Surface Mass Balance Projections From Three Regional Climate Models Under a Strong Warming Scenario (SSP5-8.5) Coastal Supra-Permafrost Aquifers of the Arctic and Their Significant Groundwater, Carbon, and Nitrogen Fluxes Enablement or Suppression of Collisionless Magnetic Reconnection by the Background Plasma Beta and Guide Field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1