{"title":"通过工程化 CYP450 氧化双酰偶联形成芳基霉素核心的结构和机理透视","authors":"Vandana Kardam, Vaibhav Bhatt, Kshatresh Dubey","doi":"10.1039/d4dt02197e","DOIUrl":null,"url":null,"abstract":"Arylomycin, a potent antibiotic targeting bacterial signal peptidases, is difficult to synthesize experimentally due to its poor to moderate yields and the formation of a mixture of compounds. A recent experimental bioengineering work shows that the core of Arylomycin can be efficiently synthesized by engineering Cytochrome P450 enzyme Streptomyces sp; however, the mechanism of the same was not elucidated. Herein, we have thoroughly investigated the mechanism behind the evolution of the enzyme for the synthesis of Arylomycin core via C-C bond formation in CYP450 enzyme using hybrid QM/MM calculations, MD simulations, and DFT calculations. We show that strategic mutations such as a) G-101A facilitate biaryl coupling by subtly pushing the substrate and b) Q-306→H mutation creates a strong pi-pi interaction with the substrate that brings the two phenol rings of the substrate closer to undergo C-C coupling. Importantly, our QM/MM calculations show that for an efficient C-C formation, the reaction should undergo via biradical mechanism over hydroxylation.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and Mechanistic Insights into Oxidative Biaryl Coupling to form Arylomycin Core by an Engineered CYP450\",\"authors\":\"Vandana Kardam, Vaibhav Bhatt, Kshatresh Dubey\",\"doi\":\"10.1039/d4dt02197e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arylomycin, a potent antibiotic targeting bacterial signal peptidases, is difficult to synthesize experimentally due to its poor to moderate yields and the formation of a mixture of compounds. A recent experimental bioengineering work shows that the core of Arylomycin can be efficiently synthesized by engineering Cytochrome P450 enzyme Streptomyces sp; however, the mechanism of the same was not elucidated. Herein, we have thoroughly investigated the mechanism behind the evolution of the enzyme for the synthesis of Arylomycin core via C-C bond formation in CYP450 enzyme using hybrid QM/MM calculations, MD simulations, and DFT calculations. We show that strategic mutations such as a) G-101A facilitate biaryl coupling by subtly pushing the substrate and b) Q-306→H mutation creates a strong pi-pi interaction with the substrate that brings the two phenol rings of the substrate closer to undergo C-C coupling. Importantly, our QM/MM calculations show that for an efficient C-C formation, the reaction should undergo via biradical mechanism over hydroxylation.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4dt02197e\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4dt02197e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Structural and Mechanistic Insights into Oxidative Biaryl Coupling to form Arylomycin Core by an Engineered CYP450
Arylomycin, a potent antibiotic targeting bacterial signal peptidases, is difficult to synthesize experimentally due to its poor to moderate yields and the formation of a mixture of compounds. A recent experimental bioengineering work shows that the core of Arylomycin can be efficiently synthesized by engineering Cytochrome P450 enzyme Streptomyces sp; however, the mechanism of the same was not elucidated. Herein, we have thoroughly investigated the mechanism behind the evolution of the enzyme for the synthesis of Arylomycin core via C-C bond formation in CYP450 enzyme using hybrid QM/MM calculations, MD simulations, and DFT calculations. We show that strategic mutations such as a) G-101A facilitate biaryl coupling by subtly pushing the substrate and b) Q-306→H mutation creates a strong pi-pi interaction with the substrate that brings the two phenol rings of the substrate closer to undergo C-C coupling. Importantly, our QM/MM calculations show that for an efficient C-C formation, the reaction should undergo via biradical mechanism over hydroxylation.