Xiulan Luo, Dewei Wang, Yuting Liu, Yuanze Qiu, Junlin Zheng, Guimin Xia, Ahmed Elbeltagi, Daocai Chi
{"title":"用铁改性生物炭部分替代磷肥可改善地膜覆盖下花生根系形态并提高产量","authors":"Xiulan Luo, Dewei Wang, Yuting Liu, Yuanze Qiu, Junlin Zheng, Guimin Xia, Ahmed Elbeltagi, Daocai Chi","doi":"10.3389/fpls.2024.1459751","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Peanut production is being increasingly threatened by water stress with the context of global climate change. Film mulching have been reported to alleviate the adverse impact of drought on peanut. Lower phosphorus use efficiency is another key factor limiting peanut yield. Application of iron-modified and phosphorus-loaded biochar (B<sub>IP</sub>) has been validated to enhance phosphorus utilization efficiency in crops. However, whether combined effect of film mulching and B<sub>IP</sub> could increase water use efficiency and enhance peanut production through regulating soil properties and root morphologies needs further investigation.</p><p><strong>Methods: </strong>A two-year (2021-2022) pot experiment using a split-plot design was conducted to investigate the effects of phosphorus fertilizer substitution using B<sub>IP</sub> on soil properties, root morphology, pod yield, and water use of peanut under film mulching. The main plots were two mulching methods, including no mulching (M0) and film mulching (M1). The subplots were four combined applications of phosphorus fertilizer with B<sub>IP</sub>, including conventional phosphorus fertilizer rates (PCR) without B<sub>IP</sub>, P1C0; 3/4 PCR with 7.5 t ha<sup>-1</sup> B<sub>IP</sub>, P2C1; 3/4 PCR with 15 t ha<sup>-1</sup> B<sub>IP</sub>, P2C2; 2/3 PCR with 7.5 t ha<sup>-1</sup> B<sub>IP</sub>, P3C1; 2/3 PCR with 15 t ha<sup>-1</sup> B<sub>IP</sub>, P3C2.</p><p><strong>Results and discussion: </strong>The results indicated that regardless of biochar amendments, compared with M0, M1 increased soil organic matter and root morphology of peanut at different growth stages in both years. In addition, M1 increased peanut yield and water use efficiency (WUE) by 18.8% and 51.6%, respectively, but decreased water consumption by 25.0%, compared to M0 (two-year average). Irrespective of film mulching, P2C1 increased length, surface area, and volume of peanut root at seedling by 16.7%, 17.7%, and 18.6%, at flowering by 6.6%, 19.9%, and 29.5%, at pod setting by 22.9%, 33.8%, and 37.3%, and at pod filling by 48.3%, 9.5%, and 38.2%, respectively (two-year average), increased soil pH and organic matter content during peanut growing season, and increased soil CEC at harvest. In general, the M1P2C1 treatment obtained the optimal root morphology, soil chemical properties, WUE, and peanut yield, which increased peanut yield by 33.2% compared to M0P1C0. In conclusion, the combination of film mulching with 7.5 t ha<sup>-1</sup> B<sub>IP</sub> (M1P2C1) effectively improved soil chemical properties, enhanced root morphology of peanut, and ultimately increased peanut yield and WUE.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535512/pdf/","citationCount":"0","resultStr":"{\"title\":\"Partial substitution of phosphorus fertilizer with iron-modified biochar improves root morphology and yield of peanut under film mulching.\",\"authors\":\"Xiulan Luo, Dewei Wang, Yuting Liu, Yuanze Qiu, Junlin Zheng, Guimin Xia, Ahmed Elbeltagi, Daocai Chi\",\"doi\":\"10.3389/fpls.2024.1459751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Peanut production is being increasingly threatened by water stress with the context of global climate change. Film mulching have been reported to alleviate the adverse impact of drought on peanut. Lower phosphorus use efficiency is another key factor limiting peanut yield. Application of iron-modified and phosphorus-loaded biochar (B<sub>IP</sub>) has been validated to enhance phosphorus utilization efficiency in crops. However, whether combined effect of film mulching and B<sub>IP</sub> could increase water use efficiency and enhance peanut production through regulating soil properties and root morphologies needs further investigation.</p><p><strong>Methods: </strong>A two-year (2021-2022) pot experiment using a split-plot design was conducted to investigate the effects of phosphorus fertilizer substitution using B<sub>IP</sub> on soil properties, root morphology, pod yield, and water use of peanut under film mulching. The main plots were two mulching methods, including no mulching (M0) and film mulching (M1). The subplots were four combined applications of phosphorus fertilizer with B<sub>IP</sub>, including conventional phosphorus fertilizer rates (PCR) without B<sub>IP</sub>, P1C0; 3/4 PCR with 7.5 t ha<sup>-1</sup> B<sub>IP</sub>, P2C1; 3/4 PCR with 15 t ha<sup>-1</sup> B<sub>IP</sub>, P2C2; 2/3 PCR with 7.5 t ha<sup>-1</sup> B<sub>IP</sub>, P3C1; 2/3 PCR with 15 t ha<sup>-1</sup> B<sub>IP</sub>, P3C2.</p><p><strong>Results and discussion: </strong>The results indicated that regardless of biochar amendments, compared with M0, M1 increased soil organic matter and root morphology of peanut at different growth stages in both years. In addition, M1 increased peanut yield and water use efficiency (WUE) by 18.8% and 51.6%, respectively, but decreased water consumption by 25.0%, compared to M0 (two-year average). Irrespective of film mulching, P2C1 increased length, surface area, and volume of peanut root at seedling by 16.7%, 17.7%, and 18.6%, at flowering by 6.6%, 19.9%, and 29.5%, at pod setting by 22.9%, 33.8%, and 37.3%, and at pod filling by 48.3%, 9.5%, and 38.2%, respectively (two-year average), increased soil pH and organic matter content during peanut growing season, and increased soil CEC at harvest. In general, the M1P2C1 treatment obtained the optimal root morphology, soil chemical properties, WUE, and peanut yield, which increased peanut yield by 33.2% compared to M0P1C0. In conclusion, the combination of film mulching with 7.5 t ha<sup>-1</sup> B<sub>IP</sub> (M1P2C1) effectively improved soil chemical properties, enhanced root morphology of peanut, and ultimately increased peanut yield and WUE.</p>\",\"PeriodicalId\":12632,\"journal\":{\"name\":\"Frontiers in Plant Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535512/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fpls.2024.1459751\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1459751","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Partial substitution of phosphorus fertilizer with iron-modified biochar improves root morphology and yield of peanut under film mulching.
Introduction: Peanut production is being increasingly threatened by water stress with the context of global climate change. Film mulching have been reported to alleviate the adverse impact of drought on peanut. Lower phosphorus use efficiency is another key factor limiting peanut yield. Application of iron-modified and phosphorus-loaded biochar (BIP) has been validated to enhance phosphorus utilization efficiency in crops. However, whether combined effect of film mulching and BIP could increase water use efficiency and enhance peanut production through regulating soil properties and root morphologies needs further investigation.
Methods: A two-year (2021-2022) pot experiment using a split-plot design was conducted to investigate the effects of phosphorus fertilizer substitution using BIP on soil properties, root morphology, pod yield, and water use of peanut under film mulching. The main plots were two mulching methods, including no mulching (M0) and film mulching (M1). The subplots were four combined applications of phosphorus fertilizer with BIP, including conventional phosphorus fertilizer rates (PCR) without BIP, P1C0; 3/4 PCR with 7.5 t ha-1 BIP, P2C1; 3/4 PCR with 15 t ha-1 BIP, P2C2; 2/3 PCR with 7.5 t ha-1 BIP, P3C1; 2/3 PCR with 15 t ha-1 BIP, P3C2.
Results and discussion: The results indicated that regardless of biochar amendments, compared with M0, M1 increased soil organic matter and root morphology of peanut at different growth stages in both years. In addition, M1 increased peanut yield and water use efficiency (WUE) by 18.8% and 51.6%, respectively, but decreased water consumption by 25.0%, compared to M0 (two-year average). Irrespective of film mulching, P2C1 increased length, surface area, and volume of peanut root at seedling by 16.7%, 17.7%, and 18.6%, at flowering by 6.6%, 19.9%, and 29.5%, at pod setting by 22.9%, 33.8%, and 37.3%, and at pod filling by 48.3%, 9.5%, and 38.2%, respectively (two-year average), increased soil pH and organic matter content during peanut growing season, and increased soil CEC at harvest. In general, the M1P2C1 treatment obtained the optimal root morphology, soil chemical properties, WUE, and peanut yield, which increased peanut yield by 33.2% compared to M0P1C0. In conclusion, the combination of film mulching with 7.5 t ha-1 BIP (M1P2C1) effectively improved soil chemical properties, enhanced root morphology of peanut, and ultimately increased peanut yield and WUE.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.