{"title":"转录因子 PagWRKY33 调节杨树赤霉素信号和免疫受体通路。","authors":"Xiao-Qian Yu, Hao-Qiang Niu, Yue-Mei Zhang, Xiao-Xu Shan, Chao Liu, Hou-Ling Wang, Weilun Yin, Xinli Xia","doi":"10.1093/plphys/kiae593","DOIUrl":null,"url":null,"abstract":"<p><p>Enhanced autoimmunity often leads to impaired plant growth and development, and the coordination of immunity and growth in Populus remains elusive. In this study, we have identified the transcription factors PagWRKY33a/b as key regulators of immune response and growth maintenance in Populus. The disruption of PagWRKY33a/b causes growth issues and autoimmunity while conferring resistance to anthracnose caused by Colletotrichum gloeosporioides. PagWRKY33a/b binds to the promoters of N requirement gene 1.1 (NRG1.1) and Gibberellic Acid-Stimulated in Arabidopsis (GASA14)during infection, activating their transcription. This process maintains disease resistance and engages in GA signaling to reduce growth costs from immune activation. The oxPagWRKY33a/nrg1.1 mutant results in reduced resistance to C. gloeosporioides. Further, PagWRKY33a/b is phosphorylated and activated by Mitogen-Activated Protein Kinase Kinase 1 (MKK1), which inhibits Respiratory Burst Oxidase Homolog D (RBOHD) and Respiratory Burst Oxidase Homolog I (RBOHI) transcription, causing ROS bursts in wrky33a/b double mutants. This leads to an upregulation of PagNRG1.1 in the absence of pathogens. However, the wrky33a/b/nrg1.1 and wrky33a/b/rbohd triple mutants show compromised defense responses, underscoring the complexity of WRKY33 regulation. Additionally, the stability of PagWRKY33 is modulated by Ring Finger Protein 5 (PagRNF5)-mediated ubiquitination, balancing plant immunity and growth. Together, our results provide key insights into the complex function of WRKY33 in Populus autoimmunity and its impact on growth and development.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcription factor PagWRKY33 regulates gibberellin signaling and immune receptor pathways in Populus.\",\"authors\":\"Xiao-Qian Yu, Hao-Qiang Niu, Yue-Mei Zhang, Xiao-Xu Shan, Chao Liu, Hou-Ling Wang, Weilun Yin, Xinli Xia\",\"doi\":\"10.1093/plphys/kiae593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enhanced autoimmunity often leads to impaired plant growth and development, and the coordination of immunity and growth in Populus remains elusive. In this study, we have identified the transcription factors PagWRKY33a/b as key regulators of immune response and growth maintenance in Populus. The disruption of PagWRKY33a/b causes growth issues and autoimmunity while conferring resistance to anthracnose caused by Colletotrichum gloeosporioides. PagWRKY33a/b binds to the promoters of N requirement gene 1.1 (NRG1.1) and Gibberellic Acid-Stimulated in Arabidopsis (GASA14)during infection, activating their transcription. This process maintains disease resistance and engages in GA signaling to reduce growth costs from immune activation. The oxPagWRKY33a/nrg1.1 mutant results in reduced resistance to C. gloeosporioides. Further, PagWRKY33a/b is phosphorylated and activated by Mitogen-Activated Protein Kinase Kinase 1 (MKK1), which inhibits Respiratory Burst Oxidase Homolog D (RBOHD) and Respiratory Burst Oxidase Homolog I (RBOHI) transcription, causing ROS bursts in wrky33a/b double mutants. This leads to an upregulation of PagNRG1.1 in the absence of pathogens. However, the wrky33a/b/nrg1.1 and wrky33a/b/rbohd triple mutants show compromised defense responses, underscoring the complexity of WRKY33 regulation. Additionally, the stability of PagWRKY33 is modulated by Ring Finger Protein 5 (PagRNF5)-mediated ubiquitination, balancing plant immunity and growth. Together, our results provide key insights into the complex function of WRKY33 in Populus autoimmunity and its impact on growth and development.</p>\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae593\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae593","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Transcription factor PagWRKY33 regulates gibberellin signaling and immune receptor pathways in Populus.
Enhanced autoimmunity often leads to impaired plant growth and development, and the coordination of immunity and growth in Populus remains elusive. In this study, we have identified the transcription factors PagWRKY33a/b as key regulators of immune response and growth maintenance in Populus. The disruption of PagWRKY33a/b causes growth issues and autoimmunity while conferring resistance to anthracnose caused by Colletotrichum gloeosporioides. PagWRKY33a/b binds to the promoters of N requirement gene 1.1 (NRG1.1) and Gibberellic Acid-Stimulated in Arabidopsis (GASA14)during infection, activating their transcription. This process maintains disease resistance and engages in GA signaling to reduce growth costs from immune activation. The oxPagWRKY33a/nrg1.1 mutant results in reduced resistance to C. gloeosporioides. Further, PagWRKY33a/b is phosphorylated and activated by Mitogen-Activated Protein Kinase Kinase 1 (MKK1), which inhibits Respiratory Burst Oxidase Homolog D (RBOHD) and Respiratory Burst Oxidase Homolog I (RBOHI) transcription, causing ROS bursts in wrky33a/b double mutants. This leads to an upregulation of PagNRG1.1 in the absence of pathogens. However, the wrky33a/b/nrg1.1 and wrky33a/b/rbohd triple mutants show compromised defense responses, underscoring the complexity of WRKY33 regulation. Additionally, the stability of PagWRKY33 is modulated by Ring Finger Protein 5 (PagRNF5)-mediated ubiquitination, balancing plant immunity and growth. Together, our results provide key insights into the complex function of WRKY33 in Populus autoimmunity and its impact on growth and development.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.