初级海马回路的输入/输出关系

IF 4.4 2区 医学 Q1 NEUROSCIENCES Journal of Neuroscience Pub Date : 2024-11-05 DOI:10.1523/JNEUROSCI.0130-24.2024
B G Gunn, B S Pruess, C M Gall, G Lynch
{"title":"初级海马回路的输入/输出关系","authors":"B G Gunn, B S Pruess, C M Gall, G Lynch","doi":"10.1523/JNEUROSCI.0130-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The hippocampus is the most studied brain region but little is known about signal throughput -- the simplest, yet most essential of circuit operations -- across its multiple stages from perforant path input to CA1 output. Using hippocampal slices derived from male mice, we have found that single-pulse lateral perforant path (LPP) stimulation produces a two-part CA1 response generated by LPP projections to CA3 ('direct path') and the dentate gyrus ('indirect path'). The latter, indirect path was far more potent in driving CA1 but did so only after a lengthy delay. Rather than operating as expected from the much discussed trisynaptic circuit argument, the indirect path used the massive CA3 recurrent collateral system to trigger a high frequency sequence of fEPSPs and spikes. The latter events promoted reliable signal transfer to CA1 but the mobilization time for the stereotyped, CA3 response resulted in surprisingly slow throughput. The circuit transmitted theta (5Hz) but not gamma (50Hz) frequency input, thus acting as a low-pass filter. It reliably transmitted short bursts of gamma input separated by the period of theta wave - CA1 spiking output under these conditions closely resembled the input signal. In all, the primary hippocampal circuit does not behave as a linear, three-part system but instead uses novel filtering and amplification steps to shape throughput and restrict effective input to select patterns. We suggest that the operations described here constitute a default mode for processing cortical inputs with other types of functions being enabled by projections from outside the extended hippocampus.<b>Significance statement</b> Despite intense interest in hippocampal contributions to behavior, surprisingly little is known about how signals are processed across the network linking cortical input to CA1 output. Here, we describe the first input/output relationship for the system with results challenging the traditional tri-synaptic circuit concept. Signal throughput requires mobilization of recurrent activity within CA3 to amplify sparse input from the dentate gyrus into an unexpectedly stereotyped composite response. Potent low-pass filters determine effective input patterns. These results open the way to new analyses of how variables such as aging affect hippocampus and its contributions to behavior while providing material needed for biologically realistic models of the structure.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Input / Output Relationships for the Primary Hippocampal Circuit.\",\"authors\":\"B G Gunn, B S Pruess, C M Gall, G Lynch\",\"doi\":\"10.1523/JNEUROSCI.0130-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The hippocampus is the most studied brain region but little is known about signal throughput -- the simplest, yet most essential of circuit operations -- across its multiple stages from perforant path input to CA1 output. Using hippocampal slices derived from male mice, we have found that single-pulse lateral perforant path (LPP) stimulation produces a two-part CA1 response generated by LPP projections to CA3 ('direct path') and the dentate gyrus ('indirect path'). The latter, indirect path was far more potent in driving CA1 but did so only after a lengthy delay. Rather than operating as expected from the much discussed trisynaptic circuit argument, the indirect path used the massive CA3 recurrent collateral system to trigger a high frequency sequence of fEPSPs and spikes. The latter events promoted reliable signal transfer to CA1 but the mobilization time for the stereotyped, CA3 response resulted in surprisingly slow throughput. The circuit transmitted theta (5Hz) but not gamma (50Hz) frequency input, thus acting as a low-pass filter. It reliably transmitted short bursts of gamma input separated by the period of theta wave - CA1 spiking output under these conditions closely resembled the input signal. In all, the primary hippocampal circuit does not behave as a linear, three-part system but instead uses novel filtering and amplification steps to shape throughput and restrict effective input to select patterns. We suggest that the operations described here constitute a default mode for processing cortical inputs with other types of functions being enabled by projections from outside the extended hippocampus.<b>Significance statement</b> Despite intense interest in hippocampal contributions to behavior, surprisingly little is known about how signals are processed across the network linking cortical input to CA1 output. Here, we describe the first input/output relationship for the system with results challenging the traditional tri-synaptic circuit concept. Signal throughput requires mobilization of recurrent activity within CA3 to amplify sparse input from the dentate gyrus into an unexpectedly stereotyped composite response. Potent low-pass filters determine effective input patterns. These results open the way to new analyses of how variables such as aging affect hippocampus and its contributions to behavior while providing material needed for biologically realistic models of the structure.</p>\",\"PeriodicalId\":50114,\"journal\":{\"name\":\"Journal of Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/JNEUROSCI.0130-24.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.0130-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

海马是研究最多的脑区,但人们对海马从穿孔路径输入到CA1输出的多个阶段的信号吞吐量却知之甚少。利用雄性小鼠的海马切片,我们发现单脉冲外侧穿孔路径(LPP)刺激会产生两部分 CA1 反应,分别由 LPP 投射到 CA3("直接路径")和齿状回("间接路径")产生。后一种间接路径对 CA1 的驱动力要强得多,但要经过长时间的延迟才能实现。间接路径并不像人们讨论较多的三突触回路论点所预期的那样,而是利用大规模的 CA3 循环旁路系统来触发高频率的 fEPSPs 和尖峰序列。后一事件促进了向 CA1 的可靠信号转移,但 CA3 定型反应的动员时间导致吞吐量出奇地缓慢。该电路能传输θ(5Hz)频率输入信号,但不能传输γ(50Hz)频率输入信号,因此起到了低通滤波器的作用。它能可靠地传输由θ波周期分隔的伽马输入短脉冲--在这些条件下,CA1尖峰输出与输入信号非常相似。总之,初级海马回路并不是一个线性的三部分系统,而是利用新颖的过滤和放大步骤来塑造吞吐量,并将有效输入限制在选择的模式上。我们认为,这里描述的操作构成了处理大脑皮层输入的默认模式,而其他类型的功能则由来自扩展海马外部的投射启用。意义声明 尽管人们对海马对行为的贡献有着浓厚的兴趣,但令人惊讶的是,人们对连接大脑皮层输入和CA1输出的整个网络是如何处理信号的知之甚少。在这里,我们首次描述了该系统的输入/输出关系,其结果对传统的三突触回路概念提出了挑战。信号吞吐需要调动 CA3 中的递归活动,将来自齿状回的稀疏输入放大为出乎意料的刻板复合反应。有效的低通滤波器决定了有效的输入模式。这些结果为分析衰老等变量如何影响海马及其对行为的贡献开辟了新的途径,同时也为该结构的生物现实模型提供了所需的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Input / Output Relationships for the Primary Hippocampal Circuit.

The hippocampus is the most studied brain region but little is known about signal throughput -- the simplest, yet most essential of circuit operations -- across its multiple stages from perforant path input to CA1 output. Using hippocampal slices derived from male mice, we have found that single-pulse lateral perforant path (LPP) stimulation produces a two-part CA1 response generated by LPP projections to CA3 ('direct path') and the dentate gyrus ('indirect path'). The latter, indirect path was far more potent in driving CA1 but did so only after a lengthy delay. Rather than operating as expected from the much discussed trisynaptic circuit argument, the indirect path used the massive CA3 recurrent collateral system to trigger a high frequency sequence of fEPSPs and spikes. The latter events promoted reliable signal transfer to CA1 but the mobilization time for the stereotyped, CA3 response resulted in surprisingly slow throughput. The circuit transmitted theta (5Hz) but not gamma (50Hz) frequency input, thus acting as a low-pass filter. It reliably transmitted short bursts of gamma input separated by the period of theta wave - CA1 spiking output under these conditions closely resembled the input signal. In all, the primary hippocampal circuit does not behave as a linear, three-part system but instead uses novel filtering and amplification steps to shape throughput and restrict effective input to select patterns. We suggest that the operations described here constitute a default mode for processing cortical inputs with other types of functions being enabled by projections from outside the extended hippocampus.Significance statement Despite intense interest in hippocampal contributions to behavior, surprisingly little is known about how signals are processed across the network linking cortical input to CA1 output. Here, we describe the first input/output relationship for the system with results challenging the traditional tri-synaptic circuit concept. Signal throughput requires mobilization of recurrent activity within CA3 to amplify sparse input from the dentate gyrus into an unexpectedly stereotyped composite response. Potent low-pass filters determine effective input patterns. These results open the way to new analyses of how variables such as aging affect hippocampus and its contributions to behavior while providing material needed for biologically realistic models of the structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
期刊最新文献
A Prefrontal→Periaqueductal Gray Pathway Differentially Engages Autonomic, Hormonal, and Behavioral Features of the Stress-Coping Response. Behavioral and Neural Mechanisms of Face-Specific Attention during Goal-Directed Visual Search. Monosynaptic Inputs to Ventral Tegmental Area Glutamate and GABA Co-transmitting Neurons. Dynamics of Saccade Trajectory Modulation by Distractors: Neural Activity Patterns in the Frontal Eye Field. Monocyte Invasion into the Retina Restricts the Regeneration of Neurons from Müller Glia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1