Xiaoxiang Zhang , Bin Zhao , Xingye Ma , Xining Jin , Shilin Chen , Pingxi Wang , Guan Zhongrong , Xiangyuan Wu , Huaisheng Zhang
{"title":"结合转录组和代谢组分析揭示玉米根系对铅胁迫的响应","authors":"Xiaoxiang Zhang , Bin Zhao , Xingye Ma , Xining Jin , Shilin Chen , Pingxi Wang , Guan Zhongrong , Xiangyuan Wu , Huaisheng Zhang","doi":"10.1016/j.plaphy.2024.109265","DOIUrl":null,"url":null,"abstract":"<div><div>As a major food crop, maize (<em>Zea mays</em> L.) is facing a serious threat of lead (Pb) pollution. Research into its Pb tolerance is crucial for ensuring food security and human health, however, the molecular mechanism underlying the response to Pb remains incompletely understood. Here, we investigated the transcriptomic and metabolome of two maize lines (BY001, a Pb-resistant line; BY006, a Pb-sensitive line) under different concentrations of Pb stress (0, 500, 1000, 2000 and 3000 mg/L). The results showed that BY001 performed well, whereas the BY006 exhibited minimal development of lateral roots upon exposure to high concentration of Pb. The antioxidant enzyme activity of BY001 remained relatively stable, while that of BY006 declined significantly. Transcriptomic analysis revealed that under high concentration of Pb stress, BY001 produced 5057 differentially expressed genes, whereas BY006 produced 3374. Functional annotation showed that these genes were primarily involved in carbohydrate metabolism, root growth, and plant resistance to external Pb stress. Further untargeted metabolomics indicated that Pb stress triggered distinct alterations in the levels of 47 diverse metabolite types across 13 distinct classes, particularly amino acids, carbohydrates, and organic acids. A conjoint omics analysis suggested that the pathways of starch and sucrose metabolism, as well as cutin, suberin, and wax biosynthesis in BY001, play a key role in the Pb resistance. These findings elucidate the biological mechanisms employed by maize to counter the effects of Pb stress, and provide a basis for breeding of maize cultivars with low Pb accumulation or tolerance.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining transcriptome and metabolome analyses to reveal the response of maize roots to Pb stress\",\"authors\":\"Xiaoxiang Zhang , Bin Zhao , Xingye Ma , Xining Jin , Shilin Chen , Pingxi Wang , Guan Zhongrong , Xiangyuan Wu , Huaisheng Zhang\",\"doi\":\"10.1016/j.plaphy.2024.109265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a major food crop, maize (<em>Zea mays</em> L.) is facing a serious threat of lead (Pb) pollution. Research into its Pb tolerance is crucial for ensuring food security and human health, however, the molecular mechanism underlying the response to Pb remains incompletely understood. Here, we investigated the transcriptomic and metabolome of two maize lines (BY001, a Pb-resistant line; BY006, a Pb-sensitive line) under different concentrations of Pb stress (0, 500, 1000, 2000 and 3000 mg/L). The results showed that BY001 performed well, whereas the BY006 exhibited minimal development of lateral roots upon exposure to high concentration of Pb. The antioxidant enzyme activity of BY001 remained relatively stable, while that of BY006 declined significantly. Transcriptomic analysis revealed that under high concentration of Pb stress, BY001 produced 5057 differentially expressed genes, whereas BY006 produced 3374. Functional annotation showed that these genes were primarily involved in carbohydrate metabolism, root growth, and plant resistance to external Pb stress. Further untargeted metabolomics indicated that Pb stress triggered distinct alterations in the levels of 47 diverse metabolite types across 13 distinct classes, particularly amino acids, carbohydrates, and organic acids. A conjoint omics analysis suggested that the pathways of starch and sucrose metabolism, as well as cutin, suberin, and wax biosynthesis in BY001, play a key role in the Pb resistance. These findings elucidate the biological mechanisms employed by maize to counter the effects of Pb stress, and provide a basis for breeding of maize cultivars with low Pb accumulation or tolerance.</div></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942824009331\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824009331","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Combining transcriptome and metabolome analyses to reveal the response of maize roots to Pb stress
As a major food crop, maize (Zea mays L.) is facing a serious threat of lead (Pb) pollution. Research into its Pb tolerance is crucial for ensuring food security and human health, however, the molecular mechanism underlying the response to Pb remains incompletely understood. Here, we investigated the transcriptomic and metabolome of two maize lines (BY001, a Pb-resistant line; BY006, a Pb-sensitive line) under different concentrations of Pb stress (0, 500, 1000, 2000 and 3000 mg/L). The results showed that BY001 performed well, whereas the BY006 exhibited minimal development of lateral roots upon exposure to high concentration of Pb. The antioxidant enzyme activity of BY001 remained relatively stable, while that of BY006 declined significantly. Transcriptomic analysis revealed that under high concentration of Pb stress, BY001 produced 5057 differentially expressed genes, whereas BY006 produced 3374. Functional annotation showed that these genes were primarily involved in carbohydrate metabolism, root growth, and plant resistance to external Pb stress. Further untargeted metabolomics indicated that Pb stress triggered distinct alterations in the levels of 47 diverse metabolite types across 13 distinct classes, particularly amino acids, carbohydrates, and organic acids. A conjoint omics analysis suggested that the pathways of starch and sucrose metabolism, as well as cutin, suberin, and wax biosynthesis in BY001, play a key role in the Pb resistance. These findings elucidate the biological mechanisms employed by maize to counter the effects of Pb stress, and provide a basis for breeding of maize cultivars with low Pb accumulation or tolerance.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.