实现 15.75% 的太阳能电池效率:使用四叔丁基三咔唑-苯腈的先进表面工程以及 n 型硅晶片和混合平面硅系统中的有机层集成

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Solid-state Electronics Pub Date : 2024-11-02 DOI:10.1016/j.sse.2024.109025
Fahim Ullah , Kamran Hasrat , Sami Iqbal , Shuang Wang
{"title":"实现 15.75% 的太阳能电池效率:使用四叔丁基三咔唑-苯腈的先进表面工程以及 n 型硅晶片和混合平面硅系统中的有机层集成","authors":"Fahim Ullah ,&nbsp;Kamran Hasrat ,&nbsp;Sami Iqbal ,&nbsp;Shuang Wang","doi":"10.1016/j.sse.2024.109025","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the progress in n-type solar cells utilizing implanted Tetra-Tert-Butyl-Tercarbazol-Benzonitrile (TTB-TB-BNZ) front surface fields and diffused Ag rear emitters. The n-type structure utilizes a systematic approach involving surface passivation, localized laser ablation, and screen printing, similar to commercial p-type solar cells. This design enables the conversion from p-type to n-type cell production. Ion implantation allows for accurate management of doping profiles, improving processing sequences and increasing efficiency. Analysis indicates that reduced post-implant annealing durations lead to a shallower doping profile, enhancing short-wavelength response. Its results in efficiencies reaching up to 15.75 % on large-area 200 cm2 n-type wafers. The study also examines hybrid planar-Si/organic heterojunction solar cells, emphasizing Tetra-Tert-Butyl-Tercarbazol-Benzonitrile (TTB-TB-BNZ) to improve photovoltaic efficiency. UV–visible and fluorescence spectroscopy indicate a maximum absorption wavelength of 360 nm and an emission wavelength of 420 nm. The concentration of TTB-TB-BNZ in (4,4′-di(9H-carbazol-9-yl)-1,1′-biphenyl) (CBP) films reaches its peak effectiveness at 40–50 %, leading to notable enhancements in light absorption and charge transport. The Si/PEDOT: PSS heterojunction solar cells incorporating TTB-TB-BNZ demonstrate a power conversion efficiency (PCE) of 15.75 %. This result underscores the potential for scalable fabrication methods to improve photovoltaic performance.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"223 ","pages":"Article 109025"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving 15.75% efficiency in solar cells: Advanced surface engineering using Tetra-Tert-Butyl-Tercarbazol-Benzonitrile and organic layer integration in n-type silicon wafer and hybrid Planar-Si systems\",\"authors\":\"Fahim Ullah ,&nbsp;Kamran Hasrat ,&nbsp;Sami Iqbal ,&nbsp;Shuang Wang\",\"doi\":\"10.1016/j.sse.2024.109025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the progress in n-type solar cells utilizing implanted Tetra-Tert-Butyl-Tercarbazol-Benzonitrile (TTB-TB-BNZ) front surface fields and diffused Ag rear emitters. The n-type structure utilizes a systematic approach involving surface passivation, localized laser ablation, and screen printing, similar to commercial p-type solar cells. This design enables the conversion from p-type to n-type cell production. Ion implantation allows for accurate management of doping profiles, improving processing sequences and increasing efficiency. Analysis indicates that reduced post-implant annealing durations lead to a shallower doping profile, enhancing short-wavelength response. Its results in efficiencies reaching up to 15.75 % on large-area 200 cm2 n-type wafers. The study also examines hybrid planar-Si/organic heterojunction solar cells, emphasizing Tetra-Tert-Butyl-Tercarbazol-Benzonitrile (TTB-TB-BNZ) to improve photovoltaic efficiency. UV–visible and fluorescence spectroscopy indicate a maximum absorption wavelength of 360 nm and an emission wavelength of 420 nm. The concentration of TTB-TB-BNZ in (4,4′-di(9H-carbazol-9-yl)-1,1′-biphenyl) (CBP) films reaches its peak effectiveness at 40–50 %, leading to notable enhancements in light absorption and charge transport. The Si/PEDOT: PSS heterojunction solar cells incorporating TTB-TB-BNZ demonstrate a power conversion efficiency (PCE) of 15.75 %. This result underscores the potential for scalable fabrication methods to improve photovoltaic performance.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"223 \",\"pages\":\"Article 109025\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110124001746\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124001746","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了利用植入式四叔丁基三咔唑-苯腈(TTB-TB-BNZ)前表面场和扩散式银后发射器的 n 型太阳能电池的研究进展。这种 n 型结构采用了与商用 p 型太阳能电池类似的系统方法,包括表面钝化、局部激光烧蚀和丝网印刷。这种设计实现了从 p 型电池到 n 型电池的生产转换。离子注入可实现对掺杂曲线的精确管理,改进加工顺序并提高效率。分析表明,缩短植入后退火持续时间可使掺杂剖面更浅,从而增强短波长响应。这使得 200 平方厘米大面积 n 型晶片的效率高达 15.75%。研究还考察了混合平面硅/有机异质结太阳能电池,强调利用四叔丁基三咔唑-苯腈(TTB-TB-BNZ)来提高光伏效率。紫外可见光谱和荧光光谱显示,其最大吸收波长为 360 纳米,发射波长为 420 纳米。在(4,4′-二(9H-咔唑-9-基)-1,1′-联苯)(CBP)薄膜中,TTB-TB-BNZ 的浓度在 40-50 % 时达到峰值效果,从而显著提高了光吸收和电荷传输能力。Si/PEDOT:PSS 异质结太阳能电池的功率转换效率 (PCE) 达到 15.75%。这一结果凸显了可扩展制造方法在提高光伏性能方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Achieving 15.75% efficiency in solar cells: Advanced surface engineering using Tetra-Tert-Butyl-Tercarbazol-Benzonitrile and organic layer integration in n-type silicon wafer and hybrid Planar-Si systems
This study investigates the progress in n-type solar cells utilizing implanted Tetra-Tert-Butyl-Tercarbazol-Benzonitrile (TTB-TB-BNZ) front surface fields and diffused Ag rear emitters. The n-type structure utilizes a systematic approach involving surface passivation, localized laser ablation, and screen printing, similar to commercial p-type solar cells. This design enables the conversion from p-type to n-type cell production. Ion implantation allows for accurate management of doping profiles, improving processing sequences and increasing efficiency. Analysis indicates that reduced post-implant annealing durations lead to a shallower doping profile, enhancing short-wavelength response. Its results in efficiencies reaching up to 15.75 % on large-area 200 cm2 n-type wafers. The study also examines hybrid planar-Si/organic heterojunction solar cells, emphasizing Tetra-Tert-Butyl-Tercarbazol-Benzonitrile (TTB-TB-BNZ) to improve photovoltaic efficiency. UV–visible and fluorescence spectroscopy indicate a maximum absorption wavelength of 360 nm and an emission wavelength of 420 nm. The concentration of TTB-TB-BNZ in (4,4′-di(9H-carbazol-9-yl)-1,1′-biphenyl) (CBP) films reaches its peak effectiveness at 40–50 %, leading to notable enhancements in light absorption and charge transport. The Si/PEDOT: PSS heterojunction solar cells incorporating TTB-TB-BNZ demonstrate a power conversion efficiency (PCE) of 15.75 %. This result underscores the potential for scalable fabrication methods to improve photovoltaic performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
期刊最新文献
Editorial Board Comparison of radiation effects of LM and UMM structure GaAs triple-junction solar cells under 1 MeV neutron irradiation Well-balanced 4H-SiC JBSFET: Integrating JBS diode and VDMOSFET characteristics for reliable 1700V applications Influence of temperature inhomogeneity and trap charge on current imbalance of SiC MOSFETs Improvement of charge storage and retention characteristics of HfO2 Charge-Trapping layer in NVM based on InGaZnO channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1