Mariana Kikuti , Claudio Marcello Melini , Xiaomei Yue , Igor A.D. Paploski , Nakarin Pamornchainavakul , Julia P. Baker , Dennis N. Makau , Kimberly VanderWaal , Amy Maschhoff , Kayla Henness , Donna Drebes , Cesar A. Corzo
{"title":"猪繁殖与呼吸综合征病毒变种的出现:前瞻性监测的实例和考虑因素","authors":"Mariana Kikuti , Claudio Marcello Melini , Xiaomei Yue , Igor A.D. Paploski , Nakarin Pamornchainavakul , Julia P. Baker , Dennis N. Makau , Kimberly VanderWaal , Amy Maschhoff , Kayla Henness , Donna Drebes , Cesar A. Corzo","doi":"10.1016/j.vetmic.2024.110293","DOIUrl":null,"url":null,"abstract":"<div><div>New PRRSV variants are constantly emerging due to the rapid evolution of this virus. We aimed to describe the emergence of a new PRRSV variant within sub-lineage 1 C, its space-time distribution, and its impact on affected herds. Additionally, we discuss considerations on how to monitor emerging PRRSV variants. This newly emerging variant was first detected in June 2022 on a sow herd undergoing a mild PRRS outbreak. Cases were defined by ORF5 nucleotide identity of ≥98 % between samples using the first detected case as a seed. A total of 382 case sequences were identified in sixteen production systems. Although most sequences originated from breeding sites (58.4 %) compared to grow-finishing sites (33.3 %), they corresponded to 118 individual sites (73 grow-finishing, 37 breeding, and 8 with no farm type information). Two spatial-temporal clusters in the Midwest were detected, but only when system was not accounted for. 63.6 % (21/33) of breeding herds reached stability in a median of 87 weeks (57 weeks in herds in which only the studied variant was detected, and 91 weeks when multiple PRRSV variants were involved). The average mortality in growing pig sites affected by this variant was not statistically different from the one found in L1C1–4–4 variant-affected sites. Altogether, these results pinpoint this as a variant of interest for continued surveillance due to increased time to stability than previously reported in the literature. Prospective monitoring of emerging variants should acknowledge the complex relationship between data limitations and multi-variant outbreaks, amongst other factors.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"298 ","pages":"Article 110293"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porcine reproductive and respiratory syndrome virus variant emergence: Example and considerations for prospective monitoring\",\"authors\":\"Mariana Kikuti , Claudio Marcello Melini , Xiaomei Yue , Igor A.D. Paploski , Nakarin Pamornchainavakul , Julia P. Baker , Dennis N. Makau , Kimberly VanderWaal , Amy Maschhoff , Kayla Henness , Donna Drebes , Cesar A. Corzo\",\"doi\":\"10.1016/j.vetmic.2024.110293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>New PRRSV variants are constantly emerging due to the rapid evolution of this virus. We aimed to describe the emergence of a new PRRSV variant within sub-lineage 1 C, its space-time distribution, and its impact on affected herds. Additionally, we discuss considerations on how to monitor emerging PRRSV variants. This newly emerging variant was first detected in June 2022 on a sow herd undergoing a mild PRRS outbreak. Cases were defined by ORF5 nucleotide identity of ≥98 % between samples using the first detected case as a seed. A total of 382 case sequences were identified in sixteen production systems. Although most sequences originated from breeding sites (58.4 %) compared to grow-finishing sites (33.3 %), they corresponded to 118 individual sites (73 grow-finishing, 37 breeding, and 8 with no farm type information). Two spatial-temporal clusters in the Midwest were detected, but only when system was not accounted for. 63.6 % (21/33) of breeding herds reached stability in a median of 87 weeks (57 weeks in herds in which only the studied variant was detected, and 91 weeks when multiple PRRSV variants were involved). The average mortality in growing pig sites affected by this variant was not statistically different from the one found in L1C1–4–4 variant-affected sites. Altogether, these results pinpoint this as a variant of interest for continued surveillance due to increased time to stability than previously reported in the literature. Prospective monitoring of emerging variants should acknowledge the complex relationship between data limitations and multi-variant outbreaks, amongst other factors.</div></div>\",\"PeriodicalId\":23551,\"journal\":{\"name\":\"Veterinary microbiology\",\"volume\":\"298 \",\"pages\":\"Article 110293\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378113524003158\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113524003158","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Porcine reproductive and respiratory syndrome virus variant emergence: Example and considerations for prospective monitoring
New PRRSV variants are constantly emerging due to the rapid evolution of this virus. We aimed to describe the emergence of a new PRRSV variant within sub-lineage 1 C, its space-time distribution, and its impact on affected herds. Additionally, we discuss considerations on how to monitor emerging PRRSV variants. This newly emerging variant was first detected in June 2022 on a sow herd undergoing a mild PRRS outbreak. Cases were defined by ORF5 nucleotide identity of ≥98 % between samples using the first detected case as a seed. A total of 382 case sequences were identified in sixteen production systems. Although most sequences originated from breeding sites (58.4 %) compared to grow-finishing sites (33.3 %), they corresponded to 118 individual sites (73 grow-finishing, 37 breeding, and 8 with no farm type information). Two spatial-temporal clusters in the Midwest were detected, but only when system was not accounted for. 63.6 % (21/33) of breeding herds reached stability in a median of 87 weeks (57 weeks in herds in which only the studied variant was detected, and 91 weeks when multiple PRRSV variants were involved). The average mortality in growing pig sites affected by this variant was not statistically different from the one found in L1C1–4–4 variant-affected sites. Altogether, these results pinpoint this as a variant of interest for continued surveillance due to increased time to stability than previously reported in the literature. Prospective monitoring of emerging variants should acknowledge the complex relationship between data limitations and multi-variant outbreaks, amongst other factors.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.