Jiateng Zhao , Haolin Gan , Yucheng Dai , Kaibao Liu , Changhui Liu
{"title":"基于相变材料和三维阵列脉动热管的热控制系统传热特性研究","authors":"Jiateng Zhao , Haolin Gan , Yucheng Dai , Kaibao Liu , Changhui Liu","doi":"10.1016/j.ijheatmasstransfer.2024.126403","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid development of electronic devices necessitates reliable thermal control systems for efficient thermal management. The combination of pulsating heat pipes (PHPs) with phase change materials (PCMs) facilitates uniform and efficient thermal regulation. This study presents a novel coupled thermal control module that integrates a three-dimensional arrayed pulsating heat pipe (3D-APHP) with a dual-plane and arrayed structure and solid-solid PCM composites. The heat transfer characteristics of the 3D-APHP, the phase change characteristics of the PCM composites, and the interaction between the 3D-APHP and PCM composites under different heating powers and filling rates were experimentally investigated. The results show that the latent heat absorption properties of the PCM composites significantly reduce the temperature fluctuation range and pulsation amplitude of the 3D-APHP, enhancing the temperature uniformity and lowering the overall temperature of the 3D-APHP by approximately 3–10 °C. The efficient thermal conductivity mechanism of the 3D-APHP ensure that the axial temperature difference of the PCM composites is controlled within 10 °C and the radial temperature difference is controlled within 1.5 °C, effectively promoting uniform heat distribution and enhancing the overall temperature rise rate. Additionally, in passive operating mode, the overall temperature difference of the 3D-APHP is smaller and the heat transfer stability is enhanced; in passive/active coupling operating mode, the average temperature of the evaporation section of the 3D-APHP decreases and the thermal response speed increases. The working characteristics of these two modes can be applied to different scenarios, highlighting the innovative integration of PHPs and PCMs in advanced thermal management solutions.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"236 ","pages":"Article 126403"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the heat transfer characteristics of thermal control system based on phase change material coupled with three-dimensional arrayed pulsating heat pipe\",\"authors\":\"Jiateng Zhao , Haolin Gan , Yucheng Dai , Kaibao Liu , Changhui Liu\",\"doi\":\"10.1016/j.ijheatmasstransfer.2024.126403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid development of electronic devices necessitates reliable thermal control systems for efficient thermal management. The combination of pulsating heat pipes (PHPs) with phase change materials (PCMs) facilitates uniform and efficient thermal regulation. This study presents a novel coupled thermal control module that integrates a three-dimensional arrayed pulsating heat pipe (3D-APHP) with a dual-plane and arrayed structure and solid-solid PCM composites. The heat transfer characteristics of the 3D-APHP, the phase change characteristics of the PCM composites, and the interaction between the 3D-APHP and PCM composites under different heating powers and filling rates were experimentally investigated. The results show that the latent heat absorption properties of the PCM composites significantly reduce the temperature fluctuation range and pulsation amplitude of the 3D-APHP, enhancing the temperature uniformity and lowering the overall temperature of the 3D-APHP by approximately 3–10 °C. The efficient thermal conductivity mechanism of the 3D-APHP ensure that the axial temperature difference of the PCM composites is controlled within 10 °C and the radial temperature difference is controlled within 1.5 °C, effectively promoting uniform heat distribution and enhancing the overall temperature rise rate. Additionally, in passive operating mode, the overall temperature difference of the 3D-APHP is smaller and the heat transfer stability is enhanced; in passive/active coupling operating mode, the average temperature of the evaporation section of the 3D-APHP decreases and the thermal response speed increases. The working characteristics of these two modes can be applied to different scenarios, highlighting the innovative integration of PHPs and PCMs in advanced thermal management solutions.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"236 \",\"pages\":\"Article 126403\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931024012328\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931024012328","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Investigation on the heat transfer characteristics of thermal control system based on phase change material coupled with three-dimensional arrayed pulsating heat pipe
The rapid development of electronic devices necessitates reliable thermal control systems for efficient thermal management. The combination of pulsating heat pipes (PHPs) with phase change materials (PCMs) facilitates uniform and efficient thermal regulation. This study presents a novel coupled thermal control module that integrates a three-dimensional arrayed pulsating heat pipe (3D-APHP) with a dual-plane and arrayed structure and solid-solid PCM composites. The heat transfer characteristics of the 3D-APHP, the phase change characteristics of the PCM composites, and the interaction between the 3D-APHP and PCM composites under different heating powers and filling rates were experimentally investigated. The results show that the latent heat absorption properties of the PCM composites significantly reduce the temperature fluctuation range and pulsation amplitude of the 3D-APHP, enhancing the temperature uniformity and lowering the overall temperature of the 3D-APHP by approximately 3–10 °C. The efficient thermal conductivity mechanism of the 3D-APHP ensure that the axial temperature difference of the PCM composites is controlled within 10 °C and the radial temperature difference is controlled within 1.5 °C, effectively promoting uniform heat distribution and enhancing the overall temperature rise rate. Additionally, in passive operating mode, the overall temperature difference of the 3D-APHP is smaller and the heat transfer stability is enhanced; in passive/active coupling operating mode, the average temperature of the evaporation section of the 3D-APHP decreases and the thermal response speed increases. The working characteristics of these two modes can be applied to different scenarios, highlighting the innovative integration of PHPs and PCMs in advanced thermal management solutions.
期刊介绍:
International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems.
Topics include:
-New methods of measuring and/or correlating transport-property data
-Energy engineering
-Environmental applications of heat and/or mass transfer