Benedikt Sochor, Simon Schraad, Linus F. Huber, Alexander Hexemer, Tim Laarmann, Sarathlal Koyiloth Vayalil, Peter Müller-Buschbaum, Stephan V. Roth
{"title":"层厚度对掺杂氯金酸的全喷涂聚(3-己基噻吩-2,5-二基)薄膜热电性能的影响","authors":"Benedikt Sochor, Simon Schraad, Linus F. Huber, Alexander Hexemer, Tim Laarmann, Sarathlal Koyiloth Vayalil, Peter Müller-Buschbaum, Stephan V. Roth","doi":"10.1007/s11998-024-01008-0","DOIUrl":null,"url":null,"abstract":"<div><p>The thermoelectric properties of fully sprayed thin films of poly(3-hexylthiophen-2,5-diyl) (P3HT) doped with chloroauric acid are investigated for different film thicknesses. The film thickness increases logarithmically with increasing amount of deposited material on the surfaces. Both the electrical conductivity and measured Seebeck coefficients of the doped thin films show an optimal polymer layer thickness between 275 and 310 nm and yield a maximum power factor of <span>\\((1.77\\,\\pm \\,0.22) \\frac{\\mu \\text {W}}{\\text {m}\\cdot \\text {K}^2}\\)</span>. The optimum layer thickness results from the optimal amount of dopant molecules per monomer between 1.1 and 1.3 at these ratios of P3HT and HAuCl<span>\\(_4\\)</span> for the thin film fabrication.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"1945 - 1954"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-024-01008-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of layer thickness on the thermoelectric properties of fully sprayed poly(3-hexylthiophene-2,5-diyl) thin films doped with chloroauric acid\",\"authors\":\"Benedikt Sochor, Simon Schraad, Linus F. Huber, Alexander Hexemer, Tim Laarmann, Sarathlal Koyiloth Vayalil, Peter Müller-Buschbaum, Stephan V. Roth\",\"doi\":\"10.1007/s11998-024-01008-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The thermoelectric properties of fully sprayed thin films of poly(3-hexylthiophen-2,5-diyl) (P3HT) doped with chloroauric acid are investigated for different film thicknesses. The film thickness increases logarithmically with increasing amount of deposited material on the surfaces. Both the electrical conductivity and measured Seebeck coefficients of the doped thin films show an optimal polymer layer thickness between 275 and 310 nm and yield a maximum power factor of <span>\\\\((1.77\\\\,\\\\pm \\\\,0.22) \\\\frac{\\\\mu \\\\text {W}}{\\\\text {m}\\\\cdot \\\\text {K}^2}\\\\)</span>. The optimum layer thickness results from the optimal amount of dopant molecules per monomer between 1.1 and 1.3 at these ratios of P3HT and HAuCl<span>\\\\(_4\\\\)</span> for the thin film fabrication.</p></div>\",\"PeriodicalId\":619,\"journal\":{\"name\":\"Journal of Coatings Technology and Research\",\"volume\":\"21 6\",\"pages\":\"1945 - 1954\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11998-024-01008-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coatings Technology and Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11998-024-01008-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-024-01008-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Effect of layer thickness on the thermoelectric properties of fully sprayed poly(3-hexylthiophene-2,5-diyl) thin films doped with chloroauric acid
The thermoelectric properties of fully sprayed thin films of poly(3-hexylthiophen-2,5-diyl) (P3HT) doped with chloroauric acid are investigated for different film thicknesses. The film thickness increases logarithmically with increasing amount of deposited material on the surfaces. Both the electrical conductivity and measured Seebeck coefficients of the doped thin films show an optimal polymer layer thickness between 275 and 310 nm and yield a maximum power factor of \((1.77\,\pm \,0.22) \frac{\mu \text {W}}{\text {m}\cdot \text {K}^2}\). The optimum layer thickness results from the optimal amount of dopant molecules per monomer between 1.1 and 1.3 at these ratios of P3HT and HAuCl\(_4\) for the thin film fabrication.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.