{"title":"集成电池存储系统的太阳能电动汽车充电站","authors":"Aradhana Shukla, Harisharanam Shukla, Satish Kumar Yadav, Jyotsna Singh, Rajendra Bahadur Singh","doi":"10.1002/est2.70077","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The shift towards electrical vehicles (EVs) can be an important alternative to internal combustion engines for sustainable energy solutions. However, increased EV adoption will increase the charging demand, and there will be a load on the grid electricity. Integrating solar photovoltaic systems with EV charging infrastructure will not only support environmental goals, but also ensure a more resilient and self-sufficient energy system. A standalone PV system is a good option to reduce the stress on the grid for charging EVs. This present work pivots on the design and performance assessment of a solar photovoltaic system customized for an electric vehicle charging station in Bangalore, India. For this purpose, we have used the PVsyst software to design and optimize a standalone PV system with battery energy storage for EV charging stations. The result shows that 51.1 kWp PV system will be sufficient to meet the energy demand of the charging station by producing 98 313 kWh array energy. The proposed system showed a good average performance ratio of 68.90%. This study shows that the integration of standalone solar photovoltaic systems with EV charging stations is crucial in India and other countries to alleviate grid stress and promote sustainable energy use. This approach not only supports the transition to cleaner transportation but also enhances energy security and reduces dependency on fossil fuels.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solar Powered Electric Vehicle Charging Station With Integrated Battery Storage System\",\"authors\":\"Aradhana Shukla, Harisharanam Shukla, Satish Kumar Yadav, Jyotsna Singh, Rajendra Bahadur Singh\",\"doi\":\"10.1002/est2.70077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The shift towards electrical vehicles (EVs) can be an important alternative to internal combustion engines for sustainable energy solutions. However, increased EV adoption will increase the charging demand, and there will be a load on the grid electricity. Integrating solar photovoltaic systems with EV charging infrastructure will not only support environmental goals, but also ensure a more resilient and self-sufficient energy system. A standalone PV system is a good option to reduce the stress on the grid for charging EVs. This present work pivots on the design and performance assessment of a solar photovoltaic system customized for an electric vehicle charging station in Bangalore, India. For this purpose, we have used the PVsyst software to design and optimize a standalone PV system with battery energy storage for EV charging stations. The result shows that 51.1 kWp PV system will be sufficient to meet the energy demand of the charging station by producing 98 313 kWh array energy. The proposed system showed a good average performance ratio of 68.90%. This study shows that the integration of standalone solar photovoltaic systems with EV charging stations is crucial in India and other countries to alleviate grid stress and promote sustainable energy use. This approach not only supports the transition to cleaner transportation but also enhances energy security and reduces dependency on fossil fuels.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"6 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solar Powered Electric Vehicle Charging Station With Integrated Battery Storage System
The shift towards electrical vehicles (EVs) can be an important alternative to internal combustion engines for sustainable energy solutions. However, increased EV adoption will increase the charging demand, and there will be a load on the grid electricity. Integrating solar photovoltaic systems with EV charging infrastructure will not only support environmental goals, but also ensure a more resilient and self-sufficient energy system. A standalone PV system is a good option to reduce the stress on the grid for charging EVs. This present work pivots on the design and performance assessment of a solar photovoltaic system customized for an electric vehicle charging station in Bangalore, India. For this purpose, we have used the PVsyst software to design and optimize a standalone PV system with battery energy storage for EV charging stations. The result shows that 51.1 kWp PV system will be sufficient to meet the energy demand of the charging station by producing 98 313 kWh array energy. The proposed system showed a good average performance ratio of 68.90%. This study shows that the integration of standalone solar photovoltaic systems with EV charging stations is crucial in India and other countries to alleviate grid stress and promote sustainable energy use. This approach not only supports the transition to cleaner transportation but also enhances energy security and reduces dependency on fossil fuels.