Xiaohui Yi, Niamat Ullah, Qianqian Zhao, Jun Xiao, Ningrui Zhang, Shao-Lu Li, Yunxia Hu, Genghao Gong
{"title":"利用吡啶-二胺前体制造用于去除重金属离子的紧密聚酰胺纳滤膜","authors":"Xiaohui Yi, Niamat Ullah, Qianqian Zhao, Jun Xiao, Ningrui Zhang, Shao-Lu Li, Yunxia Hu, Genghao Gong","doi":"10.1016/j.seppur.2024.130424","DOIUrl":null,"url":null,"abstract":"Nanofiltration offers a promising solution for removing heavy metal ions from wastewater, thereby mitigating ecological and environmental risks. In this study, we synthesized a novel pyridine-diamine precursor 2,6-dipiperazine pyridine (PyBPIP), and employed it as the sole aqueous monomer to fabricate tight polyamide (PA) nanofiltration (NF) membranes <em>via</em> interfacial polymerization (IP) method with trimesoyl chloride for the separation of heavy metals. The resulting membrane features an ultrathin PA functional layer (approximately 60 nm), a lower molecular weight cut-off of 251 Da, and a weakly negatively charged surface. This NF membrane exhibits competitive water permeance of approximately 7.67 LMH/bar and excellent rejection rates exceeding 98 % for various heavy metals ions including Zn<sup>2+</sup>, Mn<sup>2+</sup>, Cu<sup>2+</sup>, along with outstanding separation performance for other divalent cations. Additionally, the NF membrane also exhibits robust stability during the 72-h operational test. In summary, this study demonstrates the feasibility of designing suitable monomers for the preparation of highly perm-selective NF membranes for the removal of heavy metal ions in wastewater.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of tight polyamide nanofiltration membrane by using a pyridine-diamine precursor for heavy metal ions removal\",\"authors\":\"Xiaohui Yi, Niamat Ullah, Qianqian Zhao, Jun Xiao, Ningrui Zhang, Shao-Lu Li, Yunxia Hu, Genghao Gong\",\"doi\":\"10.1016/j.seppur.2024.130424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanofiltration offers a promising solution for removing heavy metal ions from wastewater, thereby mitigating ecological and environmental risks. In this study, we synthesized a novel pyridine-diamine precursor 2,6-dipiperazine pyridine (PyBPIP), and employed it as the sole aqueous monomer to fabricate tight polyamide (PA) nanofiltration (NF) membranes <em>via</em> interfacial polymerization (IP) method with trimesoyl chloride for the separation of heavy metals. The resulting membrane features an ultrathin PA functional layer (approximately 60 nm), a lower molecular weight cut-off of 251 Da, and a weakly negatively charged surface. This NF membrane exhibits competitive water permeance of approximately 7.67 LMH/bar and excellent rejection rates exceeding 98 % for various heavy metals ions including Zn<sup>2+</sup>, Mn<sup>2+</sup>, Cu<sup>2+</sup>, along with outstanding separation performance for other divalent cations. Additionally, the NF membrane also exhibits robust stability during the 72-h operational test. In summary, this study demonstrates the feasibility of designing suitable monomers for the preparation of highly perm-selective NF membranes for the removal of heavy metal ions in wastewater.\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.seppur.2024.130424\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.130424","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Fabrication of tight polyamide nanofiltration membrane by using a pyridine-diamine precursor for heavy metal ions removal
Nanofiltration offers a promising solution for removing heavy metal ions from wastewater, thereby mitigating ecological and environmental risks. In this study, we synthesized a novel pyridine-diamine precursor 2,6-dipiperazine pyridine (PyBPIP), and employed it as the sole aqueous monomer to fabricate tight polyamide (PA) nanofiltration (NF) membranes via interfacial polymerization (IP) method with trimesoyl chloride for the separation of heavy metals. The resulting membrane features an ultrathin PA functional layer (approximately 60 nm), a lower molecular weight cut-off of 251 Da, and a weakly negatively charged surface. This NF membrane exhibits competitive water permeance of approximately 7.67 LMH/bar and excellent rejection rates exceeding 98 % for various heavy metals ions including Zn2+, Mn2+, Cu2+, along with outstanding separation performance for other divalent cations. Additionally, the NF membrane also exhibits robust stability during the 72-h operational test. In summary, this study demonstrates the feasibility of designing suitable monomers for the preparation of highly perm-selective NF membranes for the removal of heavy metal ions in wastewater.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.