David van Impelen, Lola González-García, Tobias Kraus
{"title":"通过低温烧结银微颗粒实现印刷电子产品的可回收设计","authors":"David van Impelen, Lola González-García, Tobias Kraus","doi":"10.1002/aelm.202400533","DOIUrl":null,"url":null,"abstract":"A low-temperature sintering mechanism of silver microparticles is established and used to enable the design-for-recycling of printed electronics. The formation of necks during the initial phase sintering of precipitated and atomized silver microparticles is studied. Temperature- and time-dependent in-situ analyses indicate the existence of a mobile silver species that provides efficient mass transport. The activation energy of neck formation identifies silver ion formation as the rate-limiting step of low-temperature silver sintering. It is demonstrated that resistivities of 271 times that of bulk silver can be attained after 40 minutes at 150°C. Low-temperature sintering not only reduces the energy required during thermal treatment but it yields layers that are suitable for recycling, too. The resulting layers have conductive necks that are mechanically weak enough to be broken during recycling. Printed layers are redispersed and the recycled silver powder is reused without loss of the electrical performance in new prints. Their conductivities are industrially relevant, which makes this recyclability-by-design approach promising for manufacturing more sustainable printed electronics.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"243 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recyclability-by-design of Printed Electronics by Low-Temperature Sintering of Silver Microparticles\",\"authors\":\"David van Impelen, Lola González-García, Tobias Kraus\",\"doi\":\"10.1002/aelm.202400533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-temperature sintering mechanism of silver microparticles is established and used to enable the design-for-recycling of printed electronics. The formation of necks during the initial phase sintering of precipitated and atomized silver microparticles is studied. Temperature- and time-dependent in-situ analyses indicate the existence of a mobile silver species that provides efficient mass transport. The activation energy of neck formation identifies silver ion formation as the rate-limiting step of low-temperature silver sintering. It is demonstrated that resistivities of 271 times that of bulk silver can be attained after 40 minutes at 150°C. Low-temperature sintering not only reduces the energy required during thermal treatment but it yields layers that are suitable for recycling, too. The resulting layers have conductive necks that are mechanically weak enough to be broken during recycling. Printed layers are redispersed and the recycled silver powder is reused without loss of the electrical performance in new prints. Their conductivities are industrially relevant, which makes this recyclability-by-design approach promising for manufacturing more sustainable printed electronics.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"243 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202400533\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400533","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Recyclability-by-design of Printed Electronics by Low-Temperature Sintering of Silver Microparticles
A low-temperature sintering mechanism of silver microparticles is established and used to enable the design-for-recycling of printed electronics. The formation of necks during the initial phase sintering of precipitated and atomized silver microparticles is studied. Temperature- and time-dependent in-situ analyses indicate the existence of a mobile silver species that provides efficient mass transport. The activation energy of neck formation identifies silver ion formation as the rate-limiting step of low-temperature silver sintering. It is demonstrated that resistivities of 271 times that of bulk silver can be attained after 40 minutes at 150°C. Low-temperature sintering not only reduces the energy required during thermal treatment but it yields layers that are suitable for recycling, too. The resulting layers have conductive necks that are mechanically weak enough to be broken during recycling. Printed layers are redispersed and the recycled silver powder is reused without loss of the electrical performance in new prints. Their conductivities are industrially relevant, which makes this recyclability-by-design approach promising for manufacturing more sustainable printed electronics.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.