{"title":"纳米微材料调节生物催化新陈代谢,实现高效环境修复:多细胞环境中质量和电子转移的精细工程设计","authors":"Haojin Peng, Yu Su, Xinyun Fan, Shuai Wang, Qingran Zhang, Yinguang Chen","doi":"10.1016/j.watres.2024.122759","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating energy and environmental crises have spurred significant research interest into developing efficient biological remediation technologies for sustainable contaminant and resource conversion. Integrating engineered nano-micro materials (NMMs) with these biocatalytic processes offers a promising approach to improve the microbial performance for environmental remediation. Core to such material-enhanced hybrid biocatalysis systems (MHBSs) is the rational regulation of metabolic processes with the assistance of NMMs, where a fine engineered mass and electron transfer is beneficial for the improved biocatalytic activity. However, the specific mechanisms of those NMMs-enhanced microbial metabolisms are normally overlooked. Here, we review the recent progress in MHBSs, focusing primarily on the mass/electron transfer regulation strategies for an enhanced microbial behavior. Specifically, the NMMs-regulated mass and electron transfer in extracellular, interfacial, and intracellular environment are summarized, where the patterns of diverse microbiological response are discussed thoroughly. Notably, fine modifications of cell interfaces and intracellular compartments by NMMs could even endow the biohybrids with new metabolic functions beyond their natural capabilities. Further, we also emphasize the importance of matching the various metabolic demands of biosystems with the diverse properties of NMMs to achieve efficient environmental remediation through a coordinated regulation strategy. Finally, major challenges and opportunities for the future development and practical implementation of MHBSs for environment remediation practices are given, aiming to provide future system design guidelines for attaining desirable biological behaviors.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 ","pages":"Article 122759"},"PeriodicalIF":11.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-micro materials regulated biocatalytic metabolism for efficient environmental remediation: Fine engineering the mass and electron transfer in multicellular environments\",\"authors\":\"Haojin Peng, Yu Su, Xinyun Fan, Shuai Wang, Qingran Zhang, Yinguang Chen\",\"doi\":\"10.1016/j.watres.2024.122759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The escalating energy and environmental crises have spurred significant research interest into developing efficient biological remediation technologies for sustainable contaminant and resource conversion. Integrating engineered nano-micro materials (NMMs) with these biocatalytic processes offers a promising approach to improve the microbial performance for environmental remediation. Core to such material-enhanced hybrid biocatalysis systems (MHBSs) is the rational regulation of metabolic processes with the assistance of NMMs, where a fine engineered mass and electron transfer is beneficial for the improved biocatalytic activity. However, the specific mechanisms of those NMMs-enhanced microbial metabolisms are normally overlooked. Here, we review the recent progress in MHBSs, focusing primarily on the mass/electron transfer regulation strategies for an enhanced microbial behavior. Specifically, the NMMs-regulated mass and electron transfer in extracellular, interfacial, and intracellular environment are summarized, where the patterns of diverse microbiological response are discussed thoroughly. Notably, fine modifications of cell interfaces and intracellular compartments by NMMs could even endow the biohybrids with new metabolic functions beyond their natural capabilities. Further, we also emphasize the importance of matching the various metabolic demands of biosystems with the diverse properties of NMMs to achieve efficient environmental remediation through a coordinated regulation strategy. Finally, major challenges and opportunities for the future development and practical implementation of MHBSs for environment remediation practices are given, aiming to provide future system design guidelines for attaining desirable biological behaviors.</div></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"268 \",\"pages\":\"Article 122759\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135424016580\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424016580","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Nano-micro materials regulated biocatalytic metabolism for efficient environmental remediation: Fine engineering the mass and electron transfer in multicellular environments
The escalating energy and environmental crises have spurred significant research interest into developing efficient biological remediation technologies for sustainable contaminant and resource conversion. Integrating engineered nano-micro materials (NMMs) with these biocatalytic processes offers a promising approach to improve the microbial performance for environmental remediation. Core to such material-enhanced hybrid biocatalysis systems (MHBSs) is the rational regulation of metabolic processes with the assistance of NMMs, where a fine engineered mass and electron transfer is beneficial for the improved biocatalytic activity. However, the specific mechanisms of those NMMs-enhanced microbial metabolisms are normally overlooked. Here, we review the recent progress in MHBSs, focusing primarily on the mass/electron transfer regulation strategies for an enhanced microbial behavior. Specifically, the NMMs-regulated mass and electron transfer in extracellular, interfacial, and intracellular environment are summarized, where the patterns of diverse microbiological response are discussed thoroughly. Notably, fine modifications of cell interfaces and intracellular compartments by NMMs could even endow the biohybrids with new metabolic functions beyond their natural capabilities. Further, we also emphasize the importance of matching the various metabolic demands of biosystems with the diverse properties of NMMs to achieve efficient environmental remediation through a coordinated regulation strategy. Finally, major challenges and opportunities for the future development and practical implementation of MHBSs for environment remediation practices are given, aiming to provide future system design guidelines for attaining desirable biological behaviors.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.