疟疾传播动态的数学探索:分数模型和数值模拟的启示

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Advanced Theory and Simulations Pub Date : 2024-11-06 DOI:10.1002/adts.202400630
Souad Bounouiga, Bilal Basti, Noureddine Benhamidouche
{"title":"疟疾传播动态的数学探索:分数模型和数值模拟的启示","authors":"Souad Bounouiga, Bilal Basti, Noureddine Benhamidouche","doi":"10.1002/adts.202400630","DOIUrl":null,"url":null,"abstract":"This study presents an innovative mathematical model denoted as the fractional SIP(H)–SI(M) model, which aims to analyze and understand the dynamics of malaria transmission and spread. This model is distinguished by incorporating memory effects through fractional differential equations, allowing for a more accurate and realistic analysis of disease spread compared to traditional models. The proposed model is applied to Algeria by estimating its parameters using recent health data (from 2000). The results revealed that the disease-free equilibrium is stable only when the basic reproduction number is less than one, indicating that controlling the spread of malaria and possibly eradicating it can be achieved by implementing appropriate preventive measures. Simulations also demonstrated a direct correlation between the rate of infection transmission and an increase in the number of infected individuals, highlighting the need for swift action when signs of an outbreak emerge. Based on these findings, a set of preventive measures is recommended, including insecticide spraying programs, widespread distribution of insecticide-treated bed nets, and implementation of effective treatment protocols for infected individuals. This study also emphasizes the importance of continuous monitoring of health data and updating model parameters to ensure the effectiveness and sustainability of preventive measures.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Exploration of Malaria Transmission Dynamics: Insights from Fractional Models and Numerical Simulation\",\"authors\":\"Souad Bounouiga, Bilal Basti, Noureddine Benhamidouche\",\"doi\":\"10.1002/adts.202400630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an innovative mathematical model denoted as the fractional SIP(H)–SI(M) model, which aims to analyze and understand the dynamics of malaria transmission and spread. This model is distinguished by incorporating memory effects through fractional differential equations, allowing for a more accurate and realistic analysis of disease spread compared to traditional models. The proposed model is applied to Algeria by estimating its parameters using recent health data (from 2000). The results revealed that the disease-free equilibrium is stable only when the basic reproduction number is less than one, indicating that controlling the spread of malaria and possibly eradicating it can be achieved by implementing appropriate preventive measures. Simulations also demonstrated a direct correlation between the rate of infection transmission and an increase in the number of infected individuals, highlighting the need for swift action when signs of an outbreak emerge. Based on these findings, a set of preventive measures is recommended, including insecticide spraying programs, widespread distribution of insecticide-treated bed nets, and implementation of effective treatment protocols for infected individuals. This study also emphasizes the importance of continuous monitoring of health data and updating model parameters to ensure the effectiveness and sustainability of preventive measures.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202400630\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400630","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个创新的数学模型,称为分数 SIP(H)-SI(M) 模型,旨在分析和了解疟疾传播和扩散的动态。该模型的独特之处在于通过分数微分方程纳入了记忆效应,与传统模型相比,可以对疾病传播进行更准确、更真实的分析。通过使用最近的健康数据(2000 年)估算模型参数,将所提出的模型应用于阿尔及利亚。结果显示,只有当基本繁殖数小于 1 时,无疾病平衡才是稳定的,这表明通过实施适当的预防措施,可以控制疟疾的传播,甚至有可能根除疟疾。模拟结果还表明,感染传播速度与受感染人数的增加直接相关,这突出表明,一旦出现疫情爆发的迹象,就必须迅速采取行动。根据这些研究结果,建议采取一系列预防措施,包括喷洒杀虫剂计划、广泛分发驱虫蚊帐以及对受感染者实施有效的治疗方案。这项研究还强调了持续监测健康数据和更新模型参数的重要性,以确保预防措施的有效性和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mathematical Exploration of Malaria Transmission Dynamics: Insights from Fractional Models and Numerical Simulation
This study presents an innovative mathematical model denoted as the fractional SIP(H)–SI(M) model, which aims to analyze and understand the dynamics of malaria transmission and spread. This model is distinguished by incorporating memory effects through fractional differential equations, allowing for a more accurate and realistic analysis of disease spread compared to traditional models. The proposed model is applied to Algeria by estimating its parameters using recent health data (from 2000). The results revealed that the disease-free equilibrium is stable only when the basic reproduction number is less than one, indicating that controlling the spread of malaria and possibly eradicating it can be achieved by implementing appropriate preventive measures. Simulations also demonstrated a direct correlation between the rate of infection transmission and an increase in the number of infected individuals, highlighting the need for swift action when signs of an outbreak emerge. Based on these findings, a set of preventive measures is recommended, including insecticide spraying programs, widespread distribution of insecticide-treated bed nets, and implementation of effective treatment protocols for infected individuals. This study also emphasizes the importance of continuous monitoring of health data and updating model parameters to ensure the effectiveness and sustainability of preventive measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
期刊最新文献
Machine-Learned Modeling for Accelerating Organic Solvent Design in Metal-Ion Batteries Topology Optimization Enabled High Performance and Easy-to-Fabricate Hybrid Photonic Crystals Pnictogen Atom Substitution to Modify the Electronic and Magnetic Properties of SiS2 Monolayer: A DFT Study Multifunctional Reconfigurable Vanadium Dioxide Integrated Metasurface for Reflection, Asymmetric Transmission and Cross-Polarization Conversion in Terahertz Region A Detailed First-Principles Study of the Structural, Elastic, Thermomechanical, and Optoelectronic Properties of Binary Rare-Earth Tritelluride NdTe3 (Adv. Theory Simul. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1