Zafari Umar, Oleg Khyzhun, Mekhrdod S. Kurboniyon, Tomoyuki Yamamoto, Mikhail G. Brik, Mega Novita, Justyna Barzowska, Michal Piasecki
{"title":"静水压力对纯净和 Ni2+ 活化 KMgF3 的结构、晶场强度和发射特性的影响","authors":"Zafari Umar, Oleg Khyzhun, Mekhrdod S. Kurboniyon, Tomoyuki Yamamoto, Mikhail G. Brik, Mega Novita, Justyna Barzowska, Michal Piasecki","doi":"10.1002/adts.202400734","DOIUrl":null,"url":null,"abstract":"To understand excellent emission and sensitivity for hydrostatic pressure luminescent ions host material, the first principles calculations carried out within density functional theory (DFT) framework are performed to clarify the electronic structure of neat and doped with Ni<sup>2+</sup> ions KMgF<sub>3</sub> single crystals. The results of band structure calculations show that F2<i>p</i> states are the principal contributors to the KMgF<sub>3</sub> valence band, mainly in its upper and central parts, while in the energy band gap of the KMgF<sub>3</sub>:Ni<sup>2+</sup> phosphor, new electronic states associated with the Ni<sup>2+</sup> 3<i>d</i>-orbitals are formed. Furthermore, the zero phonon line (ZPL) spin-forbidden transition emission energies, (<sup>3</sup>A<sub>2</sub>⇄<sup>1</sup>E) <sub>ZPL</sub>, (<sup>3</sup>A<sub>2</sub>⇄<sup>3</sup>T<sub>2</sub>) <sub>ZPL</sub>, strength of the octahedral crystal field, 10<i>Dq</i> (<sup>3</sup>A<sub>2</sub>→<sup>3</sup>T<sub>2</sub>)<sub>ZPL</sub>, are calculated for the KMgF<sub>3</sub>:Ni<sup>2+</sup> phosphor. Any changes of the <i>E<sub>m</sub></i>(<sup>3</sup>A<sub>2</sub>⇄<sup>1</sup>E)<sub>ZPL</sub> transition energy of the KMgF<sub>3</sub>:Ni<sup>2+</sup> phosphor with pressure increasing from 0 to 20 GPa are not detected, while the crystal-field strength increases linearly with increasing pressure. Present results bring a foresight tool for predicting physicochemical properties of undoped and doped wide-gap fluorides; KMgF<sub>3</sub>:Ni<sup>2+</sup>, without any toxic/harmful or expensive rare-earth can be effectively used as an optical manometer in 0–20 GPa, which covers the almost whole pressure range available at present in Diamond anvil cell experiments.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"5 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Hydrostatic Pressure on Structure, Crystal-Field Strength, and Emission Properties of Neat and Ni2+-Activated KMgF3\",\"authors\":\"Zafari Umar, Oleg Khyzhun, Mekhrdod S. Kurboniyon, Tomoyuki Yamamoto, Mikhail G. Brik, Mega Novita, Justyna Barzowska, Michal Piasecki\",\"doi\":\"10.1002/adts.202400734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To understand excellent emission and sensitivity for hydrostatic pressure luminescent ions host material, the first principles calculations carried out within density functional theory (DFT) framework are performed to clarify the electronic structure of neat and doped with Ni<sup>2+</sup> ions KMgF<sub>3</sub> single crystals. The results of band structure calculations show that F2<i>p</i> states are the principal contributors to the KMgF<sub>3</sub> valence band, mainly in its upper and central parts, while in the energy band gap of the KMgF<sub>3</sub>:Ni<sup>2+</sup> phosphor, new electronic states associated with the Ni<sup>2+</sup> 3<i>d</i>-orbitals are formed. Furthermore, the zero phonon line (ZPL) spin-forbidden transition emission energies, (<sup>3</sup>A<sub>2</sub>⇄<sup>1</sup>E) <sub>ZPL</sub>, (<sup>3</sup>A<sub>2</sub>⇄<sup>3</sup>T<sub>2</sub>) <sub>ZPL</sub>, strength of the octahedral crystal field, 10<i>Dq</i> (<sup>3</sup>A<sub>2</sub>→<sup>3</sup>T<sub>2</sub>)<sub>ZPL</sub>, are calculated for the KMgF<sub>3</sub>:Ni<sup>2+</sup> phosphor. Any changes of the <i>E<sub>m</sub></i>(<sup>3</sup>A<sub>2</sub>⇄<sup>1</sup>E)<sub>ZPL</sub> transition energy of the KMgF<sub>3</sub>:Ni<sup>2+</sup> phosphor with pressure increasing from 0 to 20 GPa are not detected, while the crystal-field strength increases linearly with increasing pressure. Present results bring a foresight tool for predicting physicochemical properties of undoped and doped wide-gap fluorides; KMgF<sub>3</sub>:Ni<sup>2+</sup>, without any toxic/harmful or expensive rare-earth can be effectively used as an optical manometer in 0–20 GPa, which covers the almost whole pressure range available at present in Diamond anvil cell experiments.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202400734\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400734","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The Effect of Hydrostatic Pressure on Structure, Crystal-Field Strength, and Emission Properties of Neat and Ni2+-Activated KMgF3
To understand excellent emission and sensitivity for hydrostatic pressure luminescent ions host material, the first principles calculations carried out within density functional theory (DFT) framework are performed to clarify the electronic structure of neat and doped with Ni2+ ions KMgF3 single crystals. The results of band structure calculations show that F2p states are the principal contributors to the KMgF3 valence band, mainly in its upper and central parts, while in the energy band gap of the KMgF3:Ni2+ phosphor, new electronic states associated with the Ni2+ 3d-orbitals are formed. Furthermore, the zero phonon line (ZPL) spin-forbidden transition emission energies, (3A2⇄1E) ZPL, (3A2⇄3T2) ZPL, strength of the octahedral crystal field, 10Dq (3A2→3T2)ZPL, are calculated for the KMgF3:Ni2+ phosphor. Any changes of the Em(3A2⇄1E)ZPL transition energy of the KMgF3:Ni2+ phosphor with pressure increasing from 0 to 20 GPa are not detected, while the crystal-field strength increases linearly with increasing pressure. Present results bring a foresight tool for predicting physicochemical properties of undoped and doped wide-gap fluorides; KMgF3:Ni2+, without any toxic/harmful or expensive rare-earth can be effectively used as an optical manometer in 0–20 GPa, which covers the almost whole pressure range available at present in Diamond anvil cell experiments.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics