用于自动检测糖尿病视网膜病变的多病灶分割引导型深度注意力网络。

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2024-12-01 Epub Date: 2024-11-05 DOI:10.1016/j.compbiomed.2024.109352
Feng Li, Xinyu Sheng, Hao Wei, Shiqing Tang, Haidong Zou
{"title":"用于自动检测糖尿病视网膜病变的多病灶分割引导型深度注意力网络。","authors":"Feng Li, Xinyu Sheng, Hao Wei, Shiqing Tang, Haidong Zou","doi":"10.1016/j.compbiomed.2024.109352","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate multi-lesion segmentation together with automated grading on fundus images played a vital role in diagnosing and treating diabetic retinopathy (DR). Nevertheless, the intrinsic patterns of fundus lesions aggravated challenges in DR detection process. Therefore, we proposed a novel multi-lesion segmentation guided deep attention network (MSGDA-Net) for accurate and automated DR detection, consisting of a DR lesion segmentation pathway as an auxiliary task to produce a lesion regional prior knowledge and a DR grading pathway to extract local fine-grained features and long-range dependency. In DR lesion segmentation pathway, we designed a Multi-Scale Attention Block (MSAB) and a Lesion-Aware Relation Block (LARB) to allow interactions among multi-lesion features for alleviating ambiguity in lesion segmentation, generating lesion regional prior knowledge. As for DR grading pathway, we presented a Spatial-Fusion Block (SFB) to enhance the lesion-related local fine-grained feature representations and eliminate irrelevant noise information under the guidance of the resulting lesion regional priors, while constructed an Enhanced Self-Attention Block (ESAB) to optimally fuse fine-grained features from SFB with long-range global-context information for grading DR. The experimental results showed that our MSGDA-Net not only achieved state-of-the-art performance in the tasks of multi-lesion segmentation and DR grading, reaching up to 49.21 % Dice, 38.05 % IoU and 51.15 % AUPR for DR lesion segmentation on the DDR dataset, as well as accuracy values of 75.00 % and 87.18 % for DR grading on local newly-built VisionDR and publicly available APTOS datasets, but also manifested good generalization and robustness on cross-data evaluation. It could serve as a promising tool for computer aided DR screening and diagnosis.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"183 ","pages":"109352"},"PeriodicalIF":7.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-lesion segmentation guided deep attention network for automated detection of diabetic retinopathy.\",\"authors\":\"Feng Li, Xinyu Sheng, Hao Wei, Shiqing Tang, Haidong Zou\",\"doi\":\"10.1016/j.compbiomed.2024.109352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate multi-lesion segmentation together with automated grading on fundus images played a vital role in diagnosing and treating diabetic retinopathy (DR). Nevertheless, the intrinsic patterns of fundus lesions aggravated challenges in DR detection process. Therefore, we proposed a novel multi-lesion segmentation guided deep attention network (MSGDA-Net) for accurate and automated DR detection, consisting of a DR lesion segmentation pathway as an auxiliary task to produce a lesion regional prior knowledge and a DR grading pathway to extract local fine-grained features and long-range dependency. In DR lesion segmentation pathway, we designed a Multi-Scale Attention Block (MSAB) and a Lesion-Aware Relation Block (LARB) to allow interactions among multi-lesion features for alleviating ambiguity in lesion segmentation, generating lesion regional prior knowledge. As for DR grading pathway, we presented a Spatial-Fusion Block (SFB) to enhance the lesion-related local fine-grained feature representations and eliminate irrelevant noise information under the guidance of the resulting lesion regional priors, while constructed an Enhanced Self-Attention Block (ESAB) to optimally fuse fine-grained features from SFB with long-range global-context information for grading DR. The experimental results showed that our MSGDA-Net not only achieved state-of-the-art performance in the tasks of multi-lesion segmentation and DR grading, reaching up to 49.21 % Dice, 38.05 % IoU and 51.15 % AUPR for DR lesion segmentation on the DDR dataset, as well as accuracy values of 75.00 % and 87.18 % for DR grading on local newly-built VisionDR and publicly available APTOS datasets, but also manifested good generalization and robustness on cross-data evaluation. It could serve as a promising tool for computer aided DR screening and diagnosis.</p>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"183 \",\"pages\":\"109352\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compbiomed.2024.109352\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109352","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对眼底图像进行精确的多病灶分割和自动分级在诊断和治疗糖尿病视网膜病变(DR)中发挥着至关重要的作用。然而,眼底病变的固有模式加剧了 DR 检测过程中的挑战。因此,我们提出了一种新颖的多病灶分割引导深度注意网络(MSGDA-Net),用于准确和自动化的 DR 检测。该网络由 DR 病灶分割通路和 DR 分级通路组成,前者作为辅助任务产生病灶区域先验知识,后者用于提取局部细粒度特征和长程依赖性。在DR病变分割路径中,我们设计了多尺度注意块(MSAB)和病变感知关系块(LARB),允许多病变特征之间的交互,以减轻病变分割的模糊性,产生病变区域先验知识。至于 DR 分级途径,我们提出了空间融合区块(Spatial-Fusion Block,SFB),以增强病变相关的局部细粒度特征表征,并在由此产生的病变区域先验知识的指导下消除无关的噪声信息;同时构建了增强自注意区块(Enhanced Self-Attention Block,ESAB),以优化 SFB 的细粒度特征与长程全局上下文信息的融合,从而对 DR 进行分级。实验结果表明,我们的MSGDA-Net不仅在多病灶分割和DR分级任务中取得了最先进的性能,在DDR数据集上的DR病灶分割达到了49.21%的Dice、38.05%的IoU和51.15%的AUPR,在本地新建的VisionDR和公开的APTOS数据集上的DR分级准确率也分别达到了75.00%和87.18%,而且在跨数据评估中表现出了良好的泛化和鲁棒性。它有望成为计算机辅助 DR 筛查和诊断的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-lesion segmentation guided deep attention network for automated detection of diabetic retinopathy.

Accurate multi-lesion segmentation together with automated grading on fundus images played a vital role in diagnosing and treating diabetic retinopathy (DR). Nevertheless, the intrinsic patterns of fundus lesions aggravated challenges in DR detection process. Therefore, we proposed a novel multi-lesion segmentation guided deep attention network (MSGDA-Net) for accurate and automated DR detection, consisting of a DR lesion segmentation pathway as an auxiliary task to produce a lesion regional prior knowledge and a DR grading pathway to extract local fine-grained features and long-range dependency. In DR lesion segmentation pathway, we designed a Multi-Scale Attention Block (MSAB) and a Lesion-Aware Relation Block (LARB) to allow interactions among multi-lesion features for alleviating ambiguity in lesion segmentation, generating lesion regional prior knowledge. As for DR grading pathway, we presented a Spatial-Fusion Block (SFB) to enhance the lesion-related local fine-grained feature representations and eliminate irrelevant noise information under the guidance of the resulting lesion regional priors, while constructed an Enhanced Self-Attention Block (ESAB) to optimally fuse fine-grained features from SFB with long-range global-context information for grading DR. The experimental results showed that our MSGDA-Net not only achieved state-of-the-art performance in the tasks of multi-lesion segmentation and DR grading, reaching up to 49.21 % Dice, 38.05 % IoU and 51.15 % AUPR for DR lesion segmentation on the DDR dataset, as well as accuracy values of 75.00 % and 87.18 % for DR grading on local newly-built VisionDR and publicly available APTOS datasets, but also manifested good generalization and robustness on cross-data evaluation. It could serve as a promising tool for computer aided DR screening and diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
An adaptive enhanced human memory algorithm for multi-level image segmentation for pathological lung cancer images. Integrating multimodal learning for improved vital health parameter estimation. Riemannian manifold-based geometric clustering of continuous glucose monitoring to improve personalized diabetes management. Transformative artificial intelligence in gastric cancer: Advancements in diagnostic techniques. Artificial intelligence and deep learning algorithms for epigenetic sequence analysis: A review for epigeneticists and AI experts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1