Mirella Mormin, Luc Rigonnot, Anne Chalumeau, Annarita Miccio, Clémence Fournier, Sandya Pajanissamy, Marie Dewannieux, Anne Galy
{"title":"环孢素 H 可改善 CD34+ 细胞与抗镰状球蛋白载体的转导,这是治疗镰状细胞病的一种可能方法。","authors":"Mirella Mormin, Luc Rigonnot, Anne Chalumeau, Annarita Miccio, Clémence Fournier, Sandya Pajanissamy, Marie Dewannieux, Anne Galy","doi":"10.1089/hum.2024.098","DOIUrl":null,"url":null,"abstract":"<p><p>Sickle cell disease (SCD) is a debilitating monogenic disease originating from mutations in the hemoglobin beta chain gene producing an abnormal hemoglobin HbS. The polymerization of HbS is responsible for the sickling of erythrocytes leading to anemia and vaso-occlusive events. Gene therapy is a promising treatment of SCD, and two different gene therapy drugs, using gene editing or gene transfer, have already reached the marketing stage. There is still a need to improve the efficacy of gene therapy in SCD, particularly when using anti-sickling beta-globin gene transfer strategies, which must outcompete the pathological HbS. One possibility is to increase transduction by inhibiting lentiviral restriction factors such as interferon-induced transmembrane proteins (IFITMs). This can be achieved by the addition of cyclosporin H (CsH) during the transduction process. This strategy was applied here in CD34<sup>+</sup> hematopoietic progenitor and stem cells obtained from cord blood (CB). A first series of experiments with lentiviral vector coding for a green fluorescent protein (GFP) gene confirmed that the addition of CsH enhanced transgene expression levels and vector copy number per cell (VCN), while CD34<sup>+</sup> cells remained viable and functional. Notably, the production of colony-forming cells (CFC) remained unaffected unless very high VCN values were reached. In a second step, CD34<sup>+</sup> cells obtained from the CB of newborns with homozygous (<i>n</i> = 2) or heterozygous (<i>n</i> = 1) SCD mutations were transduced with the GLOBE-AS3 lentiviral vector coding for the HbAS3 anti-sickling beta globin. As with GFP, GLOBE-AS3 lentiviral transduction was clearly enhanced by CsH, leading to VCN > 2 and therapeutic levels of expression of the HbAS3. Moreover, the process did not affect the viability or functions of CFC. The combination of CB progenitors, the GLOBE-AS3 vector, and CsH is thus shown here to be a promising approach for the treatment of SCD.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"896-903"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclosporin H Improves the Transduction of CD34<sup>+</sup> Cells with an Anti-Sickling Globin Vector, a Possible Therapeutic Approach for Sickle Cell Disease.\",\"authors\":\"Mirella Mormin, Luc Rigonnot, Anne Chalumeau, Annarita Miccio, Clémence Fournier, Sandya Pajanissamy, Marie Dewannieux, Anne Galy\",\"doi\":\"10.1089/hum.2024.098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sickle cell disease (SCD) is a debilitating monogenic disease originating from mutations in the hemoglobin beta chain gene producing an abnormal hemoglobin HbS. The polymerization of HbS is responsible for the sickling of erythrocytes leading to anemia and vaso-occlusive events. Gene therapy is a promising treatment of SCD, and two different gene therapy drugs, using gene editing or gene transfer, have already reached the marketing stage. There is still a need to improve the efficacy of gene therapy in SCD, particularly when using anti-sickling beta-globin gene transfer strategies, which must outcompete the pathological HbS. One possibility is to increase transduction by inhibiting lentiviral restriction factors such as interferon-induced transmembrane proteins (IFITMs). This can be achieved by the addition of cyclosporin H (CsH) during the transduction process. This strategy was applied here in CD34<sup>+</sup> hematopoietic progenitor and stem cells obtained from cord blood (CB). A first series of experiments with lentiviral vector coding for a green fluorescent protein (GFP) gene confirmed that the addition of CsH enhanced transgene expression levels and vector copy number per cell (VCN), while CD34<sup>+</sup> cells remained viable and functional. Notably, the production of colony-forming cells (CFC) remained unaffected unless very high VCN values were reached. In a second step, CD34<sup>+</sup> cells obtained from the CB of newborns with homozygous (<i>n</i> = 2) or heterozygous (<i>n</i> = 1) SCD mutations were transduced with the GLOBE-AS3 lentiviral vector coding for the HbAS3 anti-sickling beta globin. As with GFP, GLOBE-AS3 lentiviral transduction was clearly enhanced by CsH, leading to VCN > 2 and therapeutic levels of expression of the HbAS3. Moreover, the process did not affect the viability or functions of CFC. The combination of CB progenitors, the GLOBE-AS3 vector, and CsH is thus shown here to be a promising approach for the treatment of SCD.</p>\",\"PeriodicalId\":13007,\"journal\":{\"name\":\"Human gene therapy\",\"volume\":\" \",\"pages\":\"896-903\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/hum.2024.098\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hum.2024.098","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Cyclosporin H Improves the Transduction of CD34+ Cells with an Anti-Sickling Globin Vector, a Possible Therapeutic Approach for Sickle Cell Disease.
Sickle cell disease (SCD) is a debilitating monogenic disease originating from mutations in the hemoglobin beta chain gene producing an abnormal hemoglobin HbS. The polymerization of HbS is responsible for the sickling of erythrocytes leading to anemia and vaso-occlusive events. Gene therapy is a promising treatment of SCD, and two different gene therapy drugs, using gene editing or gene transfer, have already reached the marketing stage. There is still a need to improve the efficacy of gene therapy in SCD, particularly when using anti-sickling beta-globin gene transfer strategies, which must outcompete the pathological HbS. One possibility is to increase transduction by inhibiting lentiviral restriction factors such as interferon-induced transmembrane proteins (IFITMs). This can be achieved by the addition of cyclosporin H (CsH) during the transduction process. This strategy was applied here in CD34+ hematopoietic progenitor and stem cells obtained from cord blood (CB). A first series of experiments with lentiviral vector coding for a green fluorescent protein (GFP) gene confirmed that the addition of CsH enhanced transgene expression levels and vector copy number per cell (VCN), while CD34+ cells remained viable and functional. Notably, the production of colony-forming cells (CFC) remained unaffected unless very high VCN values were reached. In a second step, CD34+ cells obtained from the CB of newborns with homozygous (n = 2) or heterozygous (n = 1) SCD mutations were transduced with the GLOBE-AS3 lentiviral vector coding for the HbAS3 anti-sickling beta globin. As with GFP, GLOBE-AS3 lentiviral transduction was clearly enhanced by CsH, leading to VCN > 2 and therapeutic levels of expression of the HbAS3. Moreover, the process did not affect the viability or functions of CFC. The combination of CB progenitors, the GLOBE-AS3 vector, and CsH is thus shown here to be a promising approach for the treatment of SCD.
期刊介绍:
Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.