{"title":"亚硒酸钠对大白菜(Brassica rapa L.ssp.pekinensis)葡萄糖苷酸盐合成和抗氧化能力的影响","authors":"Yafang Luo, Shuang Zhao, Huan Wang, Huixia Bai, Qi Hu, Linlin Zhao, Tianyi Ma, Zhenyu Fan, Yushu Wang","doi":"10.1007/s12298-024-01513-x","DOIUrl":null,"url":null,"abstract":"<p><p>Chinese cabbage (<i>Brassica rapa</i> ssp. <i>pekinensis</i>) is a globally cultivated and consumed leafy vegetable due to its abundant plant secondary metabolites and antioxidant compounds, including flavonoids, ascorbic acids, glucosinolates, and vitamins, which have been reported to confer health-promoting effects. Glucosinolates components in leaves of Chinese cabbage plantlets under different concentrations of sodium selenite (0, 30, and 50 μmol/L) were analyzed. Seven glucosinolates were identified and quantified using UHPLC-QTOF-MS. Finally, treatments with 30 and 50 μmol/L Na<sub>2</sub>SeO<sub>3</sub> solution significantly increased the levels of total selenium content as well as total phenols, flavonoids, anthocyanins, and DPPH free radical scavenging ability in Chinese cabbage seedlings. Our results revealed that 30 μmol/L Na<sub>2</sub>SeO<sub>3</sub> effectively enhanced aliphatic glucosinolate levels and total glucosinolate content while causing a significant reduction in indole glucosinolates. Furthermore, downregulation was observed for <i>BrCYP79F1</i>, <i>BrBCAT4</i>, and <i>BrMAM1</i> genes associated with aliphatic glucosinolate synthesis. Conversely, <i>BrMYB28</i> and <i>BrCYP83A1</i> genes exhibited significant upregulation. Thus, the positive influence of Na<sub>2</sub>SeO<sub>3</sub> on glucosinolate biosynthesis in Chinese cabbage can be attributed to the upregulation of key genes related to this process.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"30 10","pages":"1643-1657"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534961/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of sodium selenite on the synthesis of glucosinolates and antioxidant capacity in Chinese cabbage (<i>Brassica rapa</i> L.ssp.<i>pekinensis</i>).\",\"authors\":\"Yafang Luo, Shuang Zhao, Huan Wang, Huixia Bai, Qi Hu, Linlin Zhao, Tianyi Ma, Zhenyu Fan, Yushu Wang\",\"doi\":\"10.1007/s12298-024-01513-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chinese cabbage (<i>Brassica rapa</i> ssp. <i>pekinensis</i>) is a globally cultivated and consumed leafy vegetable due to its abundant plant secondary metabolites and antioxidant compounds, including flavonoids, ascorbic acids, glucosinolates, and vitamins, which have been reported to confer health-promoting effects. Glucosinolates components in leaves of Chinese cabbage plantlets under different concentrations of sodium selenite (0, 30, and 50 μmol/L) were analyzed. Seven glucosinolates were identified and quantified using UHPLC-QTOF-MS. Finally, treatments with 30 and 50 μmol/L Na<sub>2</sub>SeO<sub>3</sub> solution significantly increased the levels of total selenium content as well as total phenols, flavonoids, anthocyanins, and DPPH free radical scavenging ability in Chinese cabbage seedlings. Our results revealed that 30 μmol/L Na<sub>2</sub>SeO<sub>3</sub> effectively enhanced aliphatic glucosinolate levels and total glucosinolate content while causing a significant reduction in indole glucosinolates. Furthermore, downregulation was observed for <i>BrCYP79F1</i>, <i>BrBCAT4</i>, and <i>BrMAM1</i> genes associated with aliphatic glucosinolate synthesis. Conversely, <i>BrMYB28</i> and <i>BrCYP83A1</i> genes exhibited significant upregulation. Thus, the positive influence of Na<sub>2</sub>SeO<sub>3</sub> on glucosinolate biosynthesis in Chinese cabbage can be attributed to the upregulation of key genes related to this process.</p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":\"30 10\",\"pages\":\"1643-1657\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534961/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-024-01513-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01513-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Effect of sodium selenite on the synthesis of glucosinolates and antioxidant capacity in Chinese cabbage (Brassica rapa L.ssp.pekinensis).
Chinese cabbage (Brassica rapa ssp. pekinensis) is a globally cultivated and consumed leafy vegetable due to its abundant plant secondary metabolites and antioxidant compounds, including flavonoids, ascorbic acids, glucosinolates, and vitamins, which have been reported to confer health-promoting effects. Glucosinolates components in leaves of Chinese cabbage plantlets under different concentrations of sodium selenite (0, 30, and 50 μmol/L) were analyzed. Seven glucosinolates were identified and quantified using UHPLC-QTOF-MS. Finally, treatments with 30 and 50 μmol/L Na2SeO3 solution significantly increased the levels of total selenium content as well as total phenols, flavonoids, anthocyanins, and DPPH free radical scavenging ability in Chinese cabbage seedlings. Our results revealed that 30 μmol/L Na2SeO3 effectively enhanced aliphatic glucosinolate levels and total glucosinolate content while causing a significant reduction in indole glucosinolates. Furthermore, downregulation was observed for BrCYP79F1, BrBCAT4, and BrMAM1 genes associated with aliphatic glucosinolate synthesis. Conversely, BrMYB28 and BrCYP83A1 genes exhibited significant upregulation. Thus, the positive influence of Na2SeO3 on glucosinolate biosynthesis in Chinese cabbage can be attributed to the upregulation of key genes related to this process.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.