Nueraili Aierken , Bo Yang , Yongke Li , Pingan Jiang , Gang Pan , Shijian Li
{"title":"基于无人机遥感和机器学习的棉花作物生长监测综述","authors":"Nueraili Aierken , Bo Yang , Yongke Li , Pingan Jiang , Gang Pan , Shijian Li","doi":"10.1016/j.compag.2024.109601","DOIUrl":null,"url":null,"abstract":"<div><div>Cotton is one of the world’s most economically significant crops. Evaluating and monitoring cotton crop growth play vital roles in precision agriculture. Unmanned aerial vehicle (UAV) based remote sensing, when integrated with machine learning technologies, exhibits considerable promise for crop growth management. Despite these technologies’ substantial impact on cotton production, there exists a scarcity of consolidated information regarding various methods used. This paper offers a comprehensive review and analysis focused on methods for monitoring and evaluating cotton growth using UAV-based imagery combined with machine learning techniques. We synthesize the existing research from the past decade within this context, particularly discussing data acquisition strategies, preprocessing methods necessary for handling UAV-acquired images effectively, and a range of machine learning models applied. This investigation offers a comprehensive outlook that could guide future research efforts towards more efficient and sustainable agricultural practices in cotton production, leveraging state-of-the-art technology.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109601"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of unmanned aerial vehicle based remote sensing and machine learning for cotton crop growth monitoring\",\"authors\":\"Nueraili Aierken , Bo Yang , Yongke Li , Pingan Jiang , Gang Pan , Shijian Li\",\"doi\":\"10.1016/j.compag.2024.109601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cotton is one of the world’s most economically significant crops. Evaluating and monitoring cotton crop growth play vital roles in precision agriculture. Unmanned aerial vehicle (UAV) based remote sensing, when integrated with machine learning technologies, exhibits considerable promise for crop growth management. Despite these technologies’ substantial impact on cotton production, there exists a scarcity of consolidated information regarding various methods used. This paper offers a comprehensive review and analysis focused on methods for monitoring and evaluating cotton growth using UAV-based imagery combined with machine learning techniques. We synthesize the existing research from the past decade within this context, particularly discussing data acquisition strategies, preprocessing methods necessary for handling UAV-acquired images effectively, and a range of machine learning models applied. This investigation offers a comprehensive outlook that could guide future research efforts towards more efficient and sustainable agricultural practices in cotton production, leveraging state-of-the-art technology.</div></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":\"227 \",\"pages\":\"Article 109601\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016816992400992X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016816992400992X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
A review of unmanned aerial vehicle based remote sensing and machine learning for cotton crop growth monitoring
Cotton is one of the world’s most economically significant crops. Evaluating and monitoring cotton crop growth play vital roles in precision agriculture. Unmanned aerial vehicle (UAV) based remote sensing, when integrated with machine learning technologies, exhibits considerable promise for crop growth management. Despite these technologies’ substantial impact on cotton production, there exists a scarcity of consolidated information regarding various methods used. This paper offers a comprehensive review and analysis focused on methods for monitoring and evaluating cotton growth using UAV-based imagery combined with machine learning techniques. We synthesize the existing research from the past decade within this context, particularly discussing data acquisition strategies, preprocessing methods necessary for handling UAV-acquired images effectively, and a range of machine learning models applied. This investigation offers a comprehensive outlook that could guide future research efforts towards more efficient and sustainable agricultural practices in cotton production, leveraging state-of-the-art technology.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.