Jeffrey D. Hyman , Alexander C. Murph , Lawrence Boampong , Alexis Navarre-Sitchler , James W. Carey , Phil Stauffer , Hari S. Viswanathan
{"title":"确定控制三维断裂网络矿化的主要因素","authors":"Jeffrey D. Hyman , Alexander C. Murph , Lawrence Boampong , Alexis Navarre-Sitchler , James W. Carey , Phil Stauffer , Hari S. Viswanathan","doi":"10.1016/j.ijggc.2024.104265","DOIUrl":null,"url":null,"abstract":"<div><div>One methodology to reduce CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the atmosphere is inject it into subsurface systems where the ambient conditions are favorable for the carbon to precipitate/mineralize thereby permanently trapping it. Prospective host rocks are relatively impermeable when intact, so the flow of fluids and associated reactive transport therein primarily occurs within and through interconnected fracture networks that provide lower hydraulic resistance. Although critically important for the success of carbon mineralization, the characterization of the interplay between network geostructure, geochemical reactions, and hydrology on the total extent of mineralization is poorly understood. To this end, a set of reactive transport simulations modeling coupled dissolution and precipitation under a variety for hydrological and geochemical conditions are performed to characterize their impact on mineralization in three-dimensional fractured media. The generated data set is used to perform a robust sensitivity analysis and characterize how model parameters, as well as the network structure, affect the total amount of precipitated mineral. It is observed that the reaction rate constant of gypsum, the volume of the network, the incoming volumetric flow rate, and initial porosity showed the strongest impact on the maximum amount of mineralization in the system throughout the simulations.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"139 ","pages":"Article 104265"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the dominant factors controlling mineralization in three-dimensional fracture networks\",\"authors\":\"Jeffrey D. Hyman , Alexander C. Murph , Lawrence Boampong , Alexis Navarre-Sitchler , James W. Carey , Phil Stauffer , Hari S. Viswanathan\",\"doi\":\"10.1016/j.ijggc.2024.104265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One methodology to reduce CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the atmosphere is inject it into subsurface systems where the ambient conditions are favorable for the carbon to precipitate/mineralize thereby permanently trapping it. Prospective host rocks are relatively impermeable when intact, so the flow of fluids and associated reactive transport therein primarily occurs within and through interconnected fracture networks that provide lower hydraulic resistance. Although critically important for the success of carbon mineralization, the characterization of the interplay between network geostructure, geochemical reactions, and hydrology on the total extent of mineralization is poorly understood. To this end, a set of reactive transport simulations modeling coupled dissolution and precipitation under a variety for hydrological and geochemical conditions are performed to characterize their impact on mineralization in three-dimensional fractured media. The generated data set is used to perform a robust sensitivity analysis and characterize how model parameters, as well as the network structure, affect the total amount of precipitated mineral. It is observed that the reaction rate constant of gypsum, the volume of the network, the incoming volumetric flow rate, and initial porosity showed the strongest impact on the maximum amount of mineralization in the system throughout the simulations.</div></div>\",\"PeriodicalId\":334,\"journal\":{\"name\":\"International Journal of Greenhouse Gas Control\",\"volume\":\"139 \",\"pages\":\"Article 104265\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Greenhouse Gas Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1750583624002081\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624002081","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Determining the dominant factors controlling mineralization in three-dimensional fracture networks
One methodology to reduce CO in the atmosphere is inject it into subsurface systems where the ambient conditions are favorable for the carbon to precipitate/mineralize thereby permanently trapping it. Prospective host rocks are relatively impermeable when intact, so the flow of fluids and associated reactive transport therein primarily occurs within and through interconnected fracture networks that provide lower hydraulic resistance. Although critically important for the success of carbon mineralization, the characterization of the interplay between network geostructure, geochemical reactions, and hydrology on the total extent of mineralization is poorly understood. To this end, a set of reactive transport simulations modeling coupled dissolution and precipitation under a variety for hydrological and geochemical conditions are performed to characterize their impact on mineralization in three-dimensional fractured media. The generated data set is used to perform a robust sensitivity analysis and characterize how model parameters, as well as the network structure, affect the total amount of precipitated mineral. It is observed that the reaction rate constant of gypsum, the volume of the network, the incoming volumetric flow rate, and initial porosity showed the strongest impact on the maximum amount of mineralization in the system throughout the simulations.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.