减少数据驱动的湍流闭合,捕捉长期统计数据

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Fluids Pub Date : 2024-11-01 DOI:10.1016/j.compfluid.2024.106469
Rik Hoekstra , Daan Crommelin , Wouter Edeling
{"title":"减少数据驱动的湍流闭合,捕捉长期统计数据","authors":"Rik Hoekstra ,&nbsp;Daan Crommelin ,&nbsp;Wouter Edeling","doi":"10.1016/j.compfluid.2024.106469","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a simple, stochastic, <em>a-posteriori</em>, turbulence closure model based on a reduced subgrid scale term. This subgrid scale term is tailor-made to capture the statistics of a small set of spatially-integrated quantities of interest (QoIs), with only one unresolved scalar time series per QoI. In contrast to other data-driven surrogates the dimension of the “learning problem” is reduced from an evolving field to one scalar time series per QoI. We use an <em>a-posteriori</em>, nudging approach to find the distribution of the scalar series over time. This approach has the advantage of taking the interaction between the solver and the surrogate into account. A stochastic surrogate parametrization is obtained by random sampling from the found distribution for the scalar time series. We compare the new method to an <em>a-priori</em> trained convolutional neural network on two-dimensional forced turbulence. Evaluating the new method is computationally much cheaper and gives similar long-term statistics.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"285 ","pages":"Article 106469"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced data-driven turbulence closure for capturing long-term statistics\",\"authors\":\"Rik Hoekstra ,&nbsp;Daan Crommelin ,&nbsp;Wouter Edeling\",\"doi\":\"10.1016/j.compfluid.2024.106469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a simple, stochastic, <em>a-posteriori</em>, turbulence closure model based on a reduced subgrid scale term. This subgrid scale term is tailor-made to capture the statistics of a small set of spatially-integrated quantities of interest (QoIs), with only one unresolved scalar time series per QoI. In contrast to other data-driven surrogates the dimension of the “learning problem” is reduced from an evolving field to one scalar time series per QoI. We use an <em>a-posteriori</em>, nudging approach to find the distribution of the scalar series over time. This approach has the advantage of taking the interaction between the solver and the surrogate into account. A stochastic surrogate parametrization is obtained by random sampling from the found distribution for the scalar time series. We compare the new method to an <em>a-priori</em> trained convolutional neural network on two-dimensional forced turbulence. Evaluating the new method is computationally much cheaper and gives similar long-term statistics.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"285 \",\"pages\":\"Article 106469\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024003001\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024003001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一个简单的随机后验湍流闭合模型,该模型基于一个缩小的子网格尺度项。这种子网格尺度项是专门为捕捉一小部分空间整合的相关量(QoIs)的统计数据而设计的,每个 QoIs 只有一个未解决的标量时间序列。与其他数据驱动的代用指标相比,"学习问题 "的维度从一个不断变化的场缩小到每个 QoI 一个标量时间序列。我们采用后验、推导的方法来寻找标量序列随时间的分布。这种方法的优点是将求解器与代用参数之间的相互作用考虑在内。从找到的标量时间序列分布中随机抽样,即可得到随机代用参数。我们将新方法与先验训练的卷积神经网络在二维强迫湍流上进行了比较。评估新方法的计算成本要低得多,而且能得到相似的长期统计数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduced data-driven turbulence closure for capturing long-term statistics
We introduce a simple, stochastic, a-posteriori, turbulence closure model based on a reduced subgrid scale term. This subgrid scale term is tailor-made to capture the statistics of a small set of spatially-integrated quantities of interest (QoIs), with only one unresolved scalar time series per QoI. In contrast to other data-driven surrogates the dimension of the “learning problem” is reduced from an evolving field to one scalar time series per QoI. We use an a-posteriori, nudging approach to find the distribution of the scalar series over time. This approach has the advantage of taking the interaction between the solver and the surrogate into account. A stochastic surrogate parametrization is obtained by random sampling from the found distribution for the scalar time series. We compare the new method to an a-priori trained convolutional neural network on two-dimensional forced turbulence. Evaluating the new method is computationally much cheaper and gives similar long-term statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
期刊最新文献
Mitigation of Shock wave boundary layer interaction using surface arc plasma energy actuators: A computational study Goal-oriented adaptive sampling for projection-based reduced-order models Predictive dynamic wetting, fluid–structure interaction simulations for braze run-out Kinetic and macroscopic modelling for dense gas flow simulations Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1