用于伤口愈合的同轴电纺纳米纤维的最新进展

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL Materials Today Bio Pub Date : 2024-10-26 DOI:10.1016/j.mtbio.2024.101309
Jing Zhao , Liyun Chen , Aiwei Ma , Xujue Bai , Yating Zeng , Daojun Liu , Bo Liu , Wancong Zhang , Shijie Tang
{"title":"用于伤口愈合的同轴电纺纳米纤维的最新进展","authors":"Jing Zhao ,&nbsp;Liyun Chen ,&nbsp;Aiwei Ma ,&nbsp;Xujue Bai ,&nbsp;Yating Zeng ,&nbsp;Daojun Liu ,&nbsp;Bo Liu ,&nbsp;Wancong Zhang ,&nbsp;Shijie Tang","doi":"10.1016/j.mtbio.2024.101309","DOIUrl":null,"url":null,"abstract":"<div><div>The skin is the body's primary immune barrier, defending it against pathogenic invasion. Skin injuries impose a significant physiological burden on patients, making effective wound management essential. Dressings are commonly employed in wound care, and electrospun nanofiber dressings are a research hotspot owing to their ease of fabrication, cost-effectiveness, and structural similarity to the extracellular matrix. Coaxial electrospinning offers considerable advantages in drug delivery, fiber structure transformation, and enhanced interaction with the host. These attributes make coaxial electrospun materials promising candidates for precision and personalized wound dressings in medical treatments. This review provides a comprehensive overview of wound healing and its influencing factors. It also outlines coaxial electrospinning's production principles and benefits in wound dressings. Guided by the factors affecting wound healing, coaxial electrospun nanofiber dressings have different application modalities. Furthermore, we discuss the current limitations and future directions for enhancing the current coaxial electrospun dressing technologies.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101309"},"PeriodicalIF":8.7000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in coaxial electrospun nanofibers for wound healing\",\"authors\":\"Jing Zhao ,&nbsp;Liyun Chen ,&nbsp;Aiwei Ma ,&nbsp;Xujue Bai ,&nbsp;Yating Zeng ,&nbsp;Daojun Liu ,&nbsp;Bo Liu ,&nbsp;Wancong Zhang ,&nbsp;Shijie Tang\",\"doi\":\"10.1016/j.mtbio.2024.101309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The skin is the body's primary immune barrier, defending it against pathogenic invasion. Skin injuries impose a significant physiological burden on patients, making effective wound management essential. Dressings are commonly employed in wound care, and electrospun nanofiber dressings are a research hotspot owing to their ease of fabrication, cost-effectiveness, and structural similarity to the extracellular matrix. Coaxial electrospinning offers considerable advantages in drug delivery, fiber structure transformation, and enhanced interaction with the host. These attributes make coaxial electrospun materials promising candidates for precision and personalized wound dressings in medical treatments. This review provides a comprehensive overview of wound healing and its influencing factors. It also outlines coaxial electrospinning's production principles and benefits in wound dressings. Guided by the factors affecting wound healing, coaxial electrospun nanofiber dressings have different application modalities. Furthermore, we discuss the current limitations and future directions for enhancing the current coaxial electrospun dressing technologies.</div></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":\"29 \",\"pages\":\"Article 101309\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006424003703\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424003703","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

皮肤是人体的主要免疫屏障,可抵御病原体的入侵。皮肤损伤给患者带来了巨大的生理负担,因此有效的伤口管理至关重要。敷料通常用于伤口护理,而电纺纳米纤维敷料因其易于制造、成本效益高以及与细胞外基质结构相似而成为研究热点。同轴电纺在药物输送、纤维结构转换和增强与宿主的相互作用方面具有相当大的优势。这些特性使得同轴电纺材料有望成为医疗中精确和个性化伤口敷料的候选材料。本综述全面概述了伤口愈合及其影响因素。它还概述了同轴电纺的生产原理以及在伤口敷料中的优势。根据影响伤口愈合的因素,同轴电纺纳米纤维敷料有不同的应用模式。此外,我们还讨论了当前同轴电纺敷料技术的局限性和未来改进方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advances in coaxial electrospun nanofibers for wound healing
The skin is the body's primary immune barrier, defending it against pathogenic invasion. Skin injuries impose a significant physiological burden on patients, making effective wound management essential. Dressings are commonly employed in wound care, and electrospun nanofiber dressings are a research hotspot owing to their ease of fabrication, cost-effectiveness, and structural similarity to the extracellular matrix. Coaxial electrospinning offers considerable advantages in drug delivery, fiber structure transformation, and enhanced interaction with the host. These attributes make coaxial electrospun materials promising candidates for precision and personalized wound dressings in medical treatments. This review provides a comprehensive overview of wound healing and its influencing factors. It also outlines coaxial electrospinning's production principles and benefits in wound dressings. Guided by the factors affecting wound healing, coaxial electrospun nanofiber dressings have different application modalities. Furthermore, we discuss the current limitations and future directions for enhancing the current coaxial electrospun dressing technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
期刊最新文献
A novel nanomedicine integrating ferroptosis and photothermal therapy, well-suitable for PD-L1-mediated immune checkpoint blockade Nickel–titanium alloy porous scaffolds based on a dominant cellular structure manufactured by laser powder bed fusion have satisfactory osteogenic efficacy A high-water retention, self-healing hydrogel thyroid model for surgical training Injectable microgels containing genetically engineered bacteria for colon cancer therapy through programmed Chemokine expression Multifunctional hydrogels loaded with tellurium nanozyme for spinal cord injury repair
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1