{"title":"轴对称膜纳米谐振器:非线性降阶模型比较","authors":"Safvan Palathingal , Dominic Vella","doi":"10.1016/j.ijnonlinmec.2024.104933","DOIUrl":null,"url":null,"abstract":"<div><div>The shift in the backbone of the frequency–response curve and the ‘jump-down’ observed at a critical frequency observed in nano-resonators are caused by their nonlinear mechanical response. The shift and jump-down point are therefore often used to infer the mechanical properties that underlie the nonlinear response, particularly the resonator’s stretching modulus. To facilitate this, the resonators’ dynamics are often modelled using a Galerkin-type numerical approach or lumped ordinary differential equations like the Duffing equation, that incorporate an appropriate nonlinearity. To understand the source of the problem’s nonlinearities, we first develop an axisymmetric but spatially-varying model of a membrane resonator subject to a uniform oscillatory load with linear damping. We then derive asymptotic solutions for the resulting partial differential equations (PDEs) using the Method of Multiple Scales (MS), which allows a systematic reduction to a Duffing-like equation with analytically determined coefficients. We also solve the PDEs numerically via the method of lines. By comparing the numerical solutions with the asymptotic results, we demonstrate that the numerical approach reveals a non-constant maximum compliance with increasing load, which contradicts the predictions of the MS analysis. In contrast, we show that combining a Galerkin decomposition with the Harmonic Balance Method accurately captures the non-constant maximum compliance and reliably predicts jump-down behaviour. We analyse the resulting frequency–response predictions derived from these methods. We also argue that fitting based on the jump-down point may be sensitive to noise and discuss strategies for fitting frequency–response curves from experimental data to theory that are robust to this.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"168 ","pages":"Article 104933"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axisymmetric membrane nano-resonators: A comparison of nonlinear reduced-order models\",\"authors\":\"Safvan Palathingal , Dominic Vella\",\"doi\":\"10.1016/j.ijnonlinmec.2024.104933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The shift in the backbone of the frequency–response curve and the ‘jump-down’ observed at a critical frequency observed in nano-resonators are caused by their nonlinear mechanical response. The shift and jump-down point are therefore often used to infer the mechanical properties that underlie the nonlinear response, particularly the resonator’s stretching modulus. To facilitate this, the resonators’ dynamics are often modelled using a Galerkin-type numerical approach or lumped ordinary differential equations like the Duffing equation, that incorporate an appropriate nonlinearity. To understand the source of the problem’s nonlinearities, we first develop an axisymmetric but spatially-varying model of a membrane resonator subject to a uniform oscillatory load with linear damping. We then derive asymptotic solutions for the resulting partial differential equations (PDEs) using the Method of Multiple Scales (MS), which allows a systematic reduction to a Duffing-like equation with analytically determined coefficients. We also solve the PDEs numerically via the method of lines. By comparing the numerical solutions with the asymptotic results, we demonstrate that the numerical approach reveals a non-constant maximum compliance with increasing load, which contradicts the predictions of the MS analysis. In contrast, we show that combining a Galerkin decomposition with the Harmonic Balance Method accurately captures the non-constant maximum compliance and reliably predicts jump-down behaviour. We analyse the resulting frequency–response predictions derived from these methods. We also argue that fitting based on the jump-down point may be sensitive to noise and discuss strategies for fitting frequency–response curves from experimental data to theory that are robust to this.</div></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":\"168 \",\"pages\":\"Article 104933\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746224002981\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224002981","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Axisymmetric membrane nano-resonators: A comparison of nonlinear reduced-order models
The shift in the backbone of the frequency–response curve and the ‘jump-down’ observed at a critical frequency observed in nano-resonators are caused by their nonlinear mechanical response. The shift and jump-down point are therefore often used to infer the mechanical properties that underlie the nonlinear response, particularly the resonator’s stretching modulus. To facilitate this, the resonators’ dynamics are often modelled using a Galerkin-type numerical approach or lumped ordinary differential equations like the Duffing equation, that incorporate an appropriate nonlinearity. To understand the source of the problem’s nonlinearities, we first develop an axisymmetric but spatially-varying model of a membrane resonator subject to a uniform oscillatory load with linear damping. We then derive asymptotic solutions for the resulting partial differential equations (PDEs) using the Method of Multiple Scales (MS), which allows a systematic reduction to a Duffing-like equation with analytically determined coefficients. We also solve the PDEs numerically via the method of lines. By comparing the numerical solutions with the asymptotic results, we demonstrate that the numerical approach reveals a non-constant maximum compliance with increasing load, which contradicts the predictions of the MS analysis. In contrast, we show that combining a Galerkin decomposition with the Harmonic Balance Method accurately captures the non-constant maximum compliance and reliably predicts jump-down behaviour. We analyse the resulting frequency–response predictions derived from these methods. We also argue that fitting based on the jump-down point may be sensitive to noise and discuss strategies for fitting frequency–response curves from experimental data to theory that are robust to this.
期刊介绍:
The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear.
The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas.
Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.